Description
The function diagnostics.pairs_posterior() does not correctly distinguish the prior distribution color from the posterior color in the diagonal subplots. The expected behavior is that the prior and posterior should have distinct colors, as seen in the off-diagonal subplots.
Is this intended behavior? If not, I can make a PR for a temporary fix.
Branch & Commit
- Branch:
dev
- Commit Hash:
97c381da61402cfc1a064355a60ae1309ff2d702
Expected vs. Actual Behavior
- Expected: Prior and posterior distributions should have distinct colors on all subplots.
- Actual: Prior color matches posterior color in diagonal subplots, making them indistinguishable.
Minimal Code for Reproduction
import numpy as np
import bayesflow as bf
dummy_prior = np.random.multivariate_normal([0, 0], np.eye(2), size=100)
dummy_posterior = np.random.multivariate_normal([0, 0], 0.1 * np.eye(2), size=100)
fig = bf.diagnostics.plots.pairs_posterior(
estimates=dummy_posterior,
priors=dummy_prior,
)
fig.savefig("test_plots.png")
Output: test_plots.png

System Info
- Python version: 3.11.11
- BayesFlow version: latest dev branch
- OS: Ubuntu 24.04