Skip to content

bbuchsbaum/fmriAR

Repository files navigation

fmriAR

fmriAR provides fast AR/ARMA-based prewhitening for fMRI GLM workflows. It estimates voxel-wise or parcel-based noise models, applies segment-aware whitening, and exposes diagnostics that make it easy to confirm residual independence.

Key capabilities

  • Automatic AR/ARMA order selection via Hannan–Rissanen initialization and iterative refinement (Hannan & Rissanen, 1982)
  • Segment-aware whitening that respects run boundaries and optional multiscale pooling across parcels
  • Convenience helpers to whiten design matrices and inspect autocorrelation diagnostics

Installation

# install.packages("remotes")  # only needed once
remotes::install_github("bbuchsbaum/fmriAR")
library(fmriAR)

Quick start

# X: design matrix (n x p), Y: voxel data (n x v), runs: factor or integer run labels
res   <- Y - X %*% qr.solve(X, Y)                      # pre-fit residuals
plan  <- fit_noise(res, runs = runs, method = "ar",    # estimate AR model
                   p = "auto", pooling = "global")
xyw   <- whiten_apply(plan, X, Y, runs = runs)         # whiten design and data
fit   <- lm.fit(xyw$X, xyw$Y)
se    <- sandwich_from_whitened_resid(xyw$X, xyw$Y, beta = fit$coefficients)
ac    <- acorr_diagnostics(xyw$Y - xyw$X %*% fit$coefficients)

See vignettes/ and ?fit_noise for more detailed workflows, including multiscale pooling and ARMA whitening.

References

  • Hannan, E. J., & Rissanen, J. (1982). Recursive estimation of mixed autoregressive-moving average order. Biometrika, 69(1), 81–94.

About

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •