Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,7 @@
* [Gradient Descent](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/gradient_descent.py)
* [K Means Clutser](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/k_means_clutser.py)
* [Linear Regression](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/linear_regression.py)
* [Logistic Regression](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/logistic_regression.py)
* [Lstm](https://github.com/bellshade/Python/blob/main/implementation/artificial_intelligence/lstm.py)
* Audio Filter
* [Audio Response](https://github.com/bellshade/Python/blob/main/implementation/audio_filter/audio_response.py)
Expand Down
75 changes: 75 additions & 0 deletions implementation/artificial_intelligence/logistic_regression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# logistik regression adalah teknik analisis data yang
# menggunakan matematika untuk menemukan antara dua
# faktor data. kemudian menggunakan hubungan ini untuk
# memprediksi nilai dari salah satu faktor tersebut
# berdasarkan faktor yang lain. prediksi biasanya
# memiliki jumlh hasil yang terbata, antara ya dan tidak.
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets


def fungsi_cost(h, y):
"""
untuk memetakan proses atau nilai dari
satu atau lebih bariabel ke bilangan rill
secara intuitif mewakili berapa biaya yang
terkait dengan proses
"""
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()


def kemungkinan_maksimum(x, y, ukuran):
"""
ini adalah metode untuk memperkirakan parameter
dari distribusi probabilitas yang diasumsukan,
mengingat beberapa data yang diamati.
"""
skor = np.dot(x, ukuran)
return np.sum(y * skor - np.log(1 + np.exp(skor)))


def fungsi_sigmoid(n):
return 1 / (1 + np.exp(-n))


def logsitik_regresi(alpha, x, y, max_iterasi=70000):
theta = np.zeros(x.shape[1])

for iterasi in range(max_iterasi):
z = np.dot(x, theta)
h = fungsi_sigmoid(z)
gradient = np.dot(x.T, h - y) / y.size
theta = theta - alpha * gradient
z = np.dot(x, theta)
h = fungsi_sigmoid(z)
j = fungsi_cost(h, y)
if iterasi % 100 == 0:
print(f"loss {j} \t")
return theta


if __name__ == "__main__":
iris = datasets.load_iris()
x = iris.data[:, :2]
y = (iris.target != 0) * 1

alpha = 0.1
theta = logsitik_regresi(alpha, x, y, max_iterasi=70000)
print("theta: ", theta)

def prediksi_probabilitas(n):
return fungsi_sigmoid(np.dot(x, theta))

plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0")
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1")
(x1_min, x1_max) = (x[:, 0].min(), x[:, 0].max())
(x2_min, x2_max) = (x[:, 1].min(), x[:, 1].max())
(xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
grid = np.c_[xx1.ravel(), xx2.ravel()]
probs = prediksi_probabilitas(grid).reshape(xx1.shape)
plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors="black")

plt.legend()
plt.show()