Skip to content

bheavner/stat_learning_class

Repository files navigation

This is the material from the winter 2014 Statistical Learning MOOC class from Stanford - 
https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about
https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/info

github repository of answers to textbook problems: 
https://github.com/asadoughi/stat-learning
https://github.com/jstjohn/IntroToStatisticalLearningR-

videos:
Ch1 Introduction
1.1 Opening Remarks https://www.youtube.com/watch?v=2wLfFB_6SKI
1.2 Examples and Framework https://www.youtube.com/watch?v=LvaTokhYnDw

Ch2 Overview of Statistical Learning
2.1 Introduction to Regression Model https://www.youtube.com/watch?v=WjyuiK5taS8
2.2 Dimensionality and Structured Models https://www.youtube.com/watch?v=UvxHOkYQl8g
2.3 Model Selection and Bias-Variance Tradeoff https://www.youtube.com/watch?v=VusKAosxxyk
2.4 Classification https://www.youtube.com/watch?v=vVj2itVNku4
2.R Introduction to R https://www.youtube.com/watch?v=jwBgGS_4RQA
Interview with John Chambers https://www.youtube.com/watch?v=jk9S3RTAl38

Ch3 Linear Regression
3.1 Simple Linear Regression https://www.youtube.com/watch?v=PsE9UqoWtS4
3.2 Hypothesis Testing and Interval Confidence https://www.youtube.com/watch?v=J6AdoiNUyWI
3.3 Multiple Linear Regression https://www.youtube.com/watch?v=1hbCJyM9ccs
3.4 Some Important Questions https://www.youtube.com/watch?v=3T6RXmIHbJ4
3.5 Extensions of the linear models https://www.youtube.com/watch?v=IFzVxLv0TKQ
3.R Linear Regression in R https://www.youtube.com/watch?v=5ONFqIk3RFg

Ch4 Classification
4.1 Introduction to Classification Problems https://www.youtube.com/watch?v=sqq21-VIa1c
4.2 Logistic Regression https://www.youtube.com/watch?v=31Q5FGRnxt4
4.3 Multivariate Logistic Regression https://www.youtube.com/watch?v=MpX8rVv_u4E
4.4 Logistic Regression - Case Control Sampling and Multiclass https://www.youtube.com/watch?v=GavRXXEHGqU
4.5 Discriminant Analysis https://www.youtube.com/watch?v=RfrGiG1Hm3M
4.6 Gaussian Discriminant Analysis - One Variable https://www.youtube.com/watch?v=QG0pVJXT6EU
4.7 Gaussian Discriminant Analysis - Many Variable https://www.youtube.com/watch?v=X4VDZDp2vqw
4.8 Quadratic Discriminant Analysis and Naive Bayes https://www.youtube.com/watch?v=6FiNGTYAOAA
4.R Classification in R.A https://www.youtube.com/watch?v=TxvEVc8YNlU
4.R Classification in R.B https://www.youtube.com/watch?v=2cl7JiPzkBY
4.R Classification in R.C https://www.youtube.com/watch?v=9TVVF7CS3F4

Ch5 Resampling Methods
Interview with Bradley Efron https://www.youtube.com/watch?v=6l9V1sINzhE
5.1 Cross-Validation https://www.youtube.com/watch?v=_2ij6eaaSl0
5.2 K-fold Cross-Validation https://www.youtube.com/watch?v=nZAM5OXrktY
5.3 Cross-Validation: the wong and right way https://www.youtube.com/watch?v=S06JpVoNaA0
5.4 The Bootstrap https://www.youtube.com/watch?v=p4BYWX7PTBM
5.5 More on the Bootstrap https://www.youtube.com/watch?v=BzHz0J9a6k0
5.R Resampling in R.A https://www.youtube.com/watch?v=6dSXlqHAoMk
5.R Resampling in R.B https://www.youtube.com/watch?v=YVSmsWoBKnA

Ch6 Linear Model Selection and Regularization
Interviews with statistics graduate students https://www.youtube.com/watch?v=MEMGOlJxxz0
6.1 Introduction and Best-Subset Selection https://www.youtube.com/watch?v=91si52nk3LA
6.2 Stepwise selection https://www.youtube.com/watch?v=nLpJd_iKmrE
6.3 Backward stepwise selection https://www.youtube.com/watch?v=NJhMSpI2Uj8
6.4 Estimating test error https://www.youtube.com/watch?v=LkifE44myLc
6.5 Validation and cross-validation https://www.youtube.com/watch?v=3p9JNaJCOb4
6.6 Shrinkage methods and ridge regression https://www.youtube.com/watch?v=cSKzqb0EKS0
6.7 The Lasso https://www.youtube.com/watch?v=A5I1G1MfUmA
6.8 Tuning parameter selection https://www.youtube.com/watch?v=xMKVUstjXBE
6.9 Dimension Reduction Methods https://www.youtube.com/watch?v=QlyROnAjnEk
6.10 Principal Components Regression and Partial Least Squares https://www.youtube.com/watch?v=eYxwWGJcOfw
6.R Model Selection in R.A https://www.youtube.com/watch?v=3kwdDGnV8MM
6.R Model Selection in R.B https://www.youtube.com/watch?v=mv-vdysZIb4
6.R Model Selection in R.C https://www.youtube.com/watch?v=F8MMHCCoALU
6.R Model Selection in R.D https://www.youtube.com/watch?v=1REe3qSotx8

Ch7 Moving Beyond Linearity
7.1 Polynomials and Step Functions https://www.youtube.com/watch?v=gtXQXA7qF3c
7.2 Piecewise-Polynomials and Splines https://www.youtube.com/watch?v=7ZIqzTNB8lk
7.3 Smoothing Splines https://www.youtube.com/watch?v=mxXHJa1DsWQ
7.4 Generalized Additive Models and Local Regression https://www.youtube.com/watch?v=N2hBXqPiegQ
7.R Nonlinear Functions in R.A https://www.youtube.com/watch?v=uQBnDGu6TYU
7.R Nonlinear Functions in R.B https://www.youtube.com/watch?v=DCn83aXXuHc

Ch8 Tree-based Methods
Interview with Jerome Friedman https://www.youtube.com/watch?v=79tR7BvYE6w
8.1 Tree-based methods https://www.youtube.com/watch?v=6ENTbK3yQUQ
8.2 More details on Trees https://www.youtube.com/watch?v=GfPR7Xhdokc
8.3 Classification trees https://www.youtube.com/watch?v=hPEJoITBbQ4
8.4 Bagging and Random Forest https://www.youtube.com/watch?v=lq_xzBRIWm4
8.5 Boosting https://www.youtube.com/watch?v=U3MdBNysk9w
8.R Tree-based Methods in R.A https://www.youtube.com/watch?v=0wZUXtvAtDc
8.R Tree-based Methods in R.B https://www.youtube.com/watch?v=IY7oWGXb77o

Ch9 Support Vector Machines
9.1 Optimal Separating Hyperplanes https://www.youtube.com/watch?v=QpbynqiTCsY
9.2 Support Vector Classifier https://www.youtube.com/watch?v=xKsTsGE7KpI
9.3 Feature Expansion and the SVM https://www.youtube.com/watch?v=dm32QvCW7wE
9.4 Example and Comparison with Logistic Regression https://www.youtube.com/watch?v=mI18GD4_ysE
9.R SVMs in R.A https://www.youtube.com/watch?v=qhyyufR0930
9.R SVMs in R.B https://www.youtube.com/watch?v=L3n2VF7yKkk

Ch10 Unsupervised Learning
10.1 Principal Components https://www.youtube.com/watch?v=ipyxSYXgzjQ
10.2 Higher Order Principal Components https://www.youtube.com/watch?v=dbuSGWCgdzw
10.3 k-means Clustering https://www.youtube.com/watch?v=aIybuNt9ps4
10.4 Hierarhical Clustering https://www.youtube.com/watch?v=Tuuc9Y06tAc
10.5 Breast Cancer Example https://www.youtube.com/watch?v=yUJcTpWNY_o
10.R Unsupervised in R.A https://www.youtube.com/watch?v=lFHISDj_4EQ
10.R Unsupervised in R.B https://www.youtube.com/watch?v=YDubYJsZ9iM
10.R Unsupervised in R.C https://www.youtube.com/watch?v=4u3zvtfqb7w

About

Material from the winter 2014 Statistical Learning MOOC class from Stanford - https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages