-
Notifications
You must be signed in to change notification settings - Fork 3
Material from the winter 2014 Statistical Learning MOOC class from Stanford - https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about
bheavner/stat_learning_class
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
This is the material from the winter 2014 Statistical Learning MOOC class from Stanford - https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/info github repository of answers to textbook problems: https://github.com/asadoughi/stat-learning https://github.com/jstjohn/IntroToStatisticalLearningR- videos: Ch1 Introduction 1.1 Opening Remarks https://www.youtube.com/watch?v=2wLfFB_6SKI 1.2 Examples and Framework https://www.youtube.com/watch?v=LvaTokhYnDw Ch2 Overview of Statistical Learning 2.1 Introduction to Regression Model https://www.youtube.com/watch?v=WjyuiK5taS8 2.2 Dimensionality and Structured Models https://www.youtube.com/watch?v=UvxHOkYQl8g 2.3 Model Selection and Bias-Variance Tradeoff https://www.youtube.com/watch?v=VusKAosxxyk 2.4 Classification https://www.youtube.com/watch?v=vVj2itVNku4 2.R Introduction to R https://www.youtube.com/watch?v=jwBgGS_4RQA Interview with John Chambers https://www.youtube.com/watch?v=jk9S3RTAl38 Ch3 Linear Regression 3.1 Simple Linear Regression https://www.youtube.com/watch?v=PsE9UqoWtS4 3.2 Hypothesis Testing and Interval Confidence https://www.youtube.com/watch?v=J6AdoiNUyWI 3.3 Multiple Linear Regression https://www.youtube.com/watch?v=1hbCJyM9ccs 3.4 Some Important Questions https://www.youtube.com/watch?v=3T6RXmIHbJ4 3.5 Extensions of the linear models https://www.youtube.com/watch?v=IFzVxLv0TKQ 3.R Linear Regression in R https://www.youtube.com/watch?v=5ONFqIk3RFg Ch4 Classification 4.1 Introduction to Classification Problems https://www.youtube.com/watch?v=sqq21-VIa1c 4.2 Logistic Regression https://www.youtube.com/watch?v=31Q5FGRnxt4 4.3 Multivariate Logistic Regression https://www.youtube.com/watch?v=MpX8rVv_u4E 4.4 Logistic Regression - Case Control Sampling and Multiclass https://www.youtube.com/watch?v=GavRXXEHGqU 4.5 Discriminant Analysis https://www.youtube.com/watch?v=RfrGiG1Hm3M 4.6 Gaussian Discriminant Analysis - One Variable https://www.youtube.com/watch?v=QG0pVJXT6EU 4.7 Gaussian Discriminant Analysis - Many Variable https://www.youtube.com/watch?v=X4VDZDp2vqw 4.8 Quadratic Discriminant Analysis and Naive Bayes https://www.youtube.com/watch?v=6FiNGTYAOAA 4.R Classification in R.A https://www.youtube.com/watch?v=TxvEVc8YNlU 4.R Classification in R.B https://www.youtube.com/watch?v=2cl7JiPzkBY 4.R Classification in R.C https://www.youtube.com/watch?v=9TVVF7CS3F4 Ch5 Resampling Methods Interview with Bradley Efron https://www.youtube.com/watch?v=6l9V1sINzhE 5.1 Cross-Validation https://www.youtube.com/watch?v=_2ij6eaaSl0 5.2 K-fold Cross-Validation https://www.youtube.com/watch?v=nZAM5OXrktY 5.3 Cross-Validation: the wong and right way https://www.youtube.com/watch?v=S06JpVoNaA0 5.4 The Bootstrap https://www.youtube.com/watch?v=p4BYWX7PTBM 5.5 More on the Bootstrap https://www.youtube.com/watch?v=BzHz0J9a6k0 5.R Resampling in R.A https://www.youtube.com/watch?v=6dSXlqHAoMk 5.R Resampling in R.B https://www.youtube.com/watch?v=YVSmsWoBKnA Ch6 Linear Model Selection and Regularization Interviews with statistics graduate students https://www.youtube.com/watch?v=MEMGOlJxxz0 6.1 Introduction and Best-Subset Selection https://www.youtube.com/watch?v=91si52nk3LA 6.2 Stepwise selection https://www.youtube.com/watch?v=nLpJd_iKmrE 6.3 Backward stepwise selection https://www.youtube.com/watch?v=NJhMSpI2Uj8 6.4 Estimating test error https://www.youtube.com/watch?v=LkifE44myLc 6.5 Validation and cross-validation https://www.youtube.com/watch?v=3p9JNaJCOb4 6.6 Shrinkage methods and ridge regression https://www.youtube.com/watch?v=cSKzqb0EKS0 6.7 The Lasso https://www.youtube.com/watch?v=A5I1G1MfUmA 6.8 Tuning parameter selection https://www.youtube.com/watch?v=xMKVUstjXBE 6.9 Dimension Reduction Methods https://www.youtube.com/watch?v=QlyROnAjnEk 6.10 Principal Components Regression and Partial Least Squares https://www.youtube.com/watch?v=eYxwWGJcOfw 6.R Model Selection in R.A https://www.youtube.com/watch?v=3kwdDGnV8MM 6.R Model Selection in R.B https://www.youtube.com/watch?v=mv-vdysZIb4 6.R Model Selection in R.C https://www.youtube.com/watch?v=F8MMHCCoALU 6.R Model Selection in R.D https://www.youtube.com/watch?v=1REe3qSotx8 Ch7 Moving Beyond Linearity 7.1 Polynomials and Step Functions https://www.youtube.com/watch?v=gtXQXA7qF3c 7.2 Piecewise-Polynomials and Splines https://www.youtube.com/watch?v=7ZIqzTNB8lk 7.3 Smoothing Splines https://www.youtube.com/watch?v=mxXHJa1DsWQ 7.4 Generalized Additive Models and Local Regression https://www.youtube.com/watch?v=N2hBXqPiegQ 7.R Nonlinear Functions in R.A https://www.youtube.com/watch?v=uQBnDGu6TYU 7.R Nonlinear Functions in R.B https://www.youtube.com/watch?v=DCn83aXXuHc Ch8 Tree-based Methods Interview with Jerome Friedman https://www.youtube.com/watch?v=79tR7BvYE6w 8.1 Tree-based methods https://www.youtube.com/watch?v=6ENTbK3yQUQ 8.2 More details on Trees https://www.youtube.com/watch?v=GfPR7Xhdokc 8.3 Classification trees https://www.youtube.com/watch?v=hPEJoITBbQ4 8.4 Bagging and Random Forest https://www.youtube.com/watch?v=lq_xzBRIWm4 8.5 Boosting https://www.youtube.com/watch?v=U3MdBNysk9w 8.R Tree-based Methods in R.A https://www.youtube.com/watch?v=0wZUXtvAtDc 8.R Tree-based Methods in R.B https://www.youtube.com/watch?v=IY7oWGXb77o Ch9 Support Vector Machines 9.1 Optimal Separating Hyperplanes https://www.youtube.com/watch?v=QpbynqiTCsY 9.2 Support Vector Classifier https://www.youtube.com/watch?v=xKsTsGE7KpI 9.3 Feature Expansion and the SVM https://www.youtube.com/watch?v=dm32QvCW7wE 9.4 Example and Comparison with Logistic Regression https://www.youtube.com/watch?v=mI18GD4_ysE 9.R SVMs in R.A https://www.youtube.com/watch?v=qhyyufR0930 9.R SVMs in R.B https://www.youtube.com/watch?v=L3n2VF7yKkk Ch10 Unsupervised Learning 10.1 Principal Components https://www.youtube.com/watch?v=ipyxSYXgzjQ 10.2 Higher Order Principal Components https://www.youtube.com/watch?v=dbuSGWCgdzw 10.3 k-means Clustering https://www.youtube.com/watch?v=aIybuNt9ps4 10.4 Hierarhical Clustering https://www.youtube.com/watch?v=Tuuc9Y06tAc 10.5 Breast Cancer Example https://www.youtube.com/watch?v=yUJcTpWNY_o 10.R Unsupervised in R.A https://www.youtube.com/watch?v=lFHISDj_4EQ 10.R Unsupervised in R.B https://www.youtube.com/watch?v=YDubYJsZ9iM 10.R Unsupervised in R.C https://www.youtube.com/watch?v=4u3zvtfqb7w
About
Material from the winter 2014 Statistical Learning MOOC class from Stanford - https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published