A FastAPI-based backend service for vector database operations, providing efficient storage and retrieval of vector embeddings.
- FastAPI-based REST API
 - Vector database operations
 - Docker containerization support
 - Kubernetes deployment configuration
 - Comprehensive logging system
 - Test suite included
 
- Python 3.8+
 - Docker (optional, for containerized deployment)
 - Kubernetes (optional, for cluster deployment)
 
- Clone the repository:
 
git clone https://github.com/bluesky0724/backend-vector-db.git
cd backend-vector-db- Create and activate a virtual environment:
 
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate- Install dependencies:
 
pip install -r requirements.txtRun the application using:
python main.pyThe API will be available at http://localhost:8000
Build and run the Docker container:
docker build -t vector-db-api .
docker run -p 8000:8000 vector-db-apiDeploy using the provided Kubernetes configurations:
kubectl apply -f deployment.yaml
kubectl apply -f service.yamlbackend-vector-db/
├── src/                # Source code
├── tests/             # Test files
├── main.py            # Application entry point
├── requirements.txt   # Python dependencies
├── Dockerfile         # Docker configuration
├── deployment.yaml    # Kubernetes deployment config
├── service.yaml       # Kubernetes service config
└── setup.sh           # Setup script
Once the application is running, you can access the interactive API documentation at:
- Swagger UI: 
http://localhost:8000/docs 
Run the test suite:
pytest tests/