npm install cactus-react-native react-native-nitro-modulesGet started with Cactus in just a few lines of code:
import { CactusLM, type Message } from 'cactus-react-native';
// Create a new instance
const cactusLM = new CactusLM();
// Download the model
await cactusLM.download({
onProgress: (progress) => console.log(`Download: ${Math.round(progress * 100)}%`)
});
// Generate a completion
const messages: Message[] = [
{ role: 'user', content: 'What is the capital of France?' }
];
const result = await cactusLM.complete({ messages });
console.log(result.response); // "The capital of France is Paris."
// Clean up resources
await cactusLM.destroy();Using the React Hook:
import { useCactusLM } from 'cactus-react-native';
const App = () => {
const cactusLM = useCactusLM();
useEffect(() => {
// Download the model if not already available
if (!cactusLM.isDownloaded) {
cactusLM.download();
}
}, []);
const handleGenerate = () => {
// Generate a completion
cactusLM.complete({
messages: [{ role: 'user', content: 'Hello!' }],
});
};
if (cactusLM.isDownloading) {
return (
<Text>
Downloading model: {Math.round(cactusLM.downloadProgress * 100)}%
</Text>
);
}
return (
<>
<Button onPress={handleGenerate} title="Generate" />
<Text>{cactusLM.completion}</Text>
</>
);
};Generate text responses from the model by providing a conversation history.
import { CactusLM, type Message } from 'cactus-react-native';
const cactusLM = new CactusLM();
const messages: Message[] = [{ role: 'user', content: 'Hello, World!' }];
const onToken = (token: string) => { console.log('Token:', token) };
const result = await cactusLM.complete({ messages, onToken });
console.log('Completion result:', result);import { useCactusLM, type Message } from 'cactus-react-native';
const App = () => {
const cactusLM = useCactusLM();
const handleComplete = async () => {
const messages: Message[] = [{ role: 'user', content: 'Hello, World!' }];
const result = await cactusLM.complete({ messages });
console.log('Completion result:', result);
};
return (
<>
<Button title="Complete" onPress={handleComplete} />
<Text>{cactusLM.completion}</Text>
</>
);
};Vision allows you to pass images along with text prompts, enabling the model to analyze and understand visual content.
import { CactusLM, type Message } from 'cactus-react-native';
// Vision-capable model
const cactusLM = new CactusLM({ model: 'lfm2-vl-450m' });
const messages: Message[] = [
{
role: 'user',
content: "What's in the image?",
images: ['path/to/your/image'],
},
];
const result = await cactusLM.complete({ messages });
console.log('Response:', result.response);import { useCactusLM, type Message } from 'cactus-react-native';
const App = () => {
// Vision-capable model
const cactusLM = useCactusLM({ model: 'lfm2-vl-450m' });
const handleAnalyze = async () => {
const messages: Message[] = [
{
role: 'user',
content: "What's in the image?",
images: ['path/to/your/image'],
},
];
await cactusLM.complete({ messages });
};
return (
<>
<Button title="Analyze Image" onPress={handleAnalyze} />
<Text>{cactusLM.completion}</Text>
</>
);
};Enable the model to generate function calls by defining available tools and their parameters.
import { CactusLM, type Message, type Tool } from 'cactus-react-native';
const tools: Tool[] = [
{
type: 'function',
name: 'get_weather',
description: 'Get current weather for a location',
parameters: {
type: 'object',
properties: {
location: {
type: 'string',
description: 'City name',
},
},
required: ['location'],
},
},
];
const cactusLM = new CactusLM();
const messages: Message[] = [
{ role: 'user', content: "What's the weather in San Francisco?" },
];
const result = await cactusLM.complete({ messages, tools });
console.log('Response:', result.response);
console.log('Function calls:', result.functionCalls);import { useCactusLM, type Message, type Tool } from 'cactus-react-native';
const tools: Tool[] = [
{
type: 'function',
name: 'get_weather',
description: 'Get current weather for a location',
parameters: {
type: 'object',
properties: {
location: {
type: 'string',
description: 'City name',
},
},
required: ['location'],
},
},
];
const App = () => {
const cactusLM = useCactusLM();
const handleComplete = async () => {
const messages: Message[] = [
{ role: 'user', content: "What's the weather in San Francisco?" },
];
const result = await cactusLM.complete({ messages, tools });
console.log('Response:', result.response);
console.log('Function calls:', result.functionCalls);
};
return <Button title="Complete" onPress={handleComplete} />;
};RAG allows you to provide a corpus of documents that the model can reference during generation, enabling it to answer questions based on your data.
import { CactusLM, type Message } from 'cactus-react-native';
const cactusLM = new CactusLM({
corpusDir: 'path/to/your/corpus', // Directory containing .txt files
});
const messages: Message[] = [
{ role: 'user', content: 'What information is in the documents?' },
];
const result = await cactusLM.complete({ messages });
console.log(result.response);import { useCactusLM, type Message } from 'cactus-react-native';
const App = () => {
const cactusLM = useCactusLM({
corpusDir: 'path/to/your/corpus', // Directory containing .txt files
});
const handleAsk = async () => {
const messages: Message[] = [
{ role: 'user', content: 'What information is in the documents?' },
];
await cactusLM.complete({ messages });
};
return (
<>
<Button title="Ask Question" onPress={handleAsk} />
<Text>{cactusLM.completion}</Text>
</>
);
};Convert text into numerical vector representations that capture semantic meaning, useful for similarity search and semantic understanding.
import { CactusLM } from 'cactus-react-native';
const cactusLM = new CactusLM();
const result = await cactusLM.embed({ text: 'Hello, World!' });
console.log('Embedding vector:', result.embedding);
console.log('Embedding vector length:', result.embedding.length);import { useCactusLM } from 'cactus-react-native';
const App = () => {
const cactusLM = useCactusLM();
const handleEmbed = async () => {
const result = await cactusLM.embed({ text: 'Hello, World!' });
console.log('Embedding vector:', result.embedding);
console.log('Embedding vector length:', result.embedding.length);
};
return <Button title="Embed" onPress={handleEmbed} />;
};new CactusLM(params?: CactusLMParams)
Parameters:
model- Model slug (default:'qwen3-0.6').contextSize- Context window size (default:2048).corpusDir- Directory containing text files for RAG (default:undefined).
download(params?: CactusLMDownloadParams): Promise<void>
Downloads the model. If the model is already downloaded, returns immediately with progress at 100%. Throws an error if a download is already in progress. Automatically refreshes the models list after successful download.
Parameters:
onProgress- Callback for download progress (0-1).
init(): Promise<void>
Initializes the model and prepares it for inference. Safe to call multiple times (idempotent). Throws an error if the model is not downloaded yet. Automatically initializes telemetry if not already done.
complete(params: CactusLMCompleteParams): Promise<CactusLMCompleteResult>
Performs text completion with optional streaming and tool support. Automatically calls init() if not already initialized. Throws an error if a generation (completion or embedding) is already in progress.
Parameters:
messages- Array ofMessageobjects.options- Generation options:temperature- Sampling temperature (default: model-optimized).topP- Nucleus sampling threshold (default: model-optimized).topK- Top-K sampling limit (default: model-optimized).maxTokens- Maximum number of tokens to generate (default:512).stopSequences- Array of strings to stop generation (default:undefined).
tools- Array ofToolobjects for function calling (default:undefined).onToken- Callback for streaming tokens.
embed(params: CactusLMEmbedParams): Promise<CactusLMEmbedResult>
Generates embeddings for the given text. Automatically calls init() if not already initialized. Throws an error if a generation (completion or embedding) is already in progress.
Parameters:
text- Text to embed.
stop(): Promise<void>
Stops ongoing generation.
reset(): Promise<void>
Resets the model's internal state, clearing any cached context. Automatically calls stop() first.
destroy(): Promise<void>
Releases all resources associated with the model. Automatically calls stop() first. Safe to call even if the model is not initialized.
getModels(params?: CactusLMGetModelsParams): Promise<CactusModel[]>
Fetches available models and persists the results locally for caching. Returns cached results if available, unless forceRefresh is true. Checks the download status for each model and includes it in the results.
Parameters:
forceRefresh- Iftrue, fetches from the server and updates the local cache (default:false).
The useCactusLM hook manages a CactusLM instance with reactive state. When model parameters (model, contextSize, or corpusDir) change, the hook creates a new instance and resets all state. The hook automatically cleans up resources when the component unmounts.
completion: string- Current generated text. Automatically accumulated during streaming. Cleared before each new completion and when callingreset()ordestroy().isGenerating: boolean- Whether the model is currently generating (completion or embedding). Both operations share this flag.isInitializing: boolean- Whether the model is initializing.isDownloaded: boolean- Whether the model is downloaded locally. Automatically checked when the hook mounts or model changes.isDownloading: boolean- Whether the model is being downloaded.downloadProgress: number- Download progress (0-1). Reset to0after download completes.error: string | null- Last error message from any operation, ornullif there is no error. Cleared before starting new operations.
download(params?: CactusLMDownloadParams): Promise<void>- Downloads the model. UpdatesisDownloadinganddownloadProgressstate during download. SetsisDownloadedtotrueon success.init(): Promise<void>- Initializes the model for inference. SetsisInitializingtotrueduring initialization.complete(params: CactusLMCompleteParams): Promise<CactusLMCompleteResult>- Generates text completions. Automatically accumulates tokens in thecompletionstate during streaming. SetsisGeneratingtotruewhile generating. Clearscompletionbefore starting.embed(params: CactusLMEmbedParams): Promise<CactusLMEmbedResult>- Generates embeddings for the given text. SetsisGeneratingtotrueduring operation.stop(): Promise<void>- Stops ongoing generation. Clears any errors.reset(): Promise<void>- Resets the model's internal state, clearing cached context. Also clears thecompletionstate.destroy(): Promise<void>- Releases all resources associated with the model. Clears thecompletionstate. Automatically called when the component unmounts.getModels(params?: CactusLMGetModelsParams): Promise<CactusModel[]>- Fetches available models and returns them. Results are cached locally.
interface CactusLMParams {
model?: string;
contextSize?: number;
corpusDir?: string;
}interface CactusLMDownloadParams {
onProgress?: (progress: number) => void;
}interface Message {
role: 'user' | 'assistant' | 'system';
content?: string;
images?: string[];
}interface Options {
temperature?: number;
topP?: number;
topK?: number;
maxTokens?: number;
stopSequences?: string[];
}interface Tool {
type: 'function';
name: string;
description: string;
parameters: {
type: 'object';
properties: {
[key: string]: {
type: string;
description: string;
};
};
required: string[];
};
}interface CactusLMCompleteParams {
messages: Message[];
options?: Options;
tools?: Tool[];
onToken?: (token: string) => void;
}interface CactusLMCompleteResult {
success: boolean;
response: string;
functionCalls?: {
name: string;
arguments: { [key: string]: any };
}[];
timeToFirstTokenMs: number;
totalTimeMs: number;
tokensPerSecond: number;
prefillTokens: number;
decodeTokens: number;
totalTokens: number;
}interface CactusLMEmbedParams {
text: string;
}interface CactusLMEmbedResult {
embedding: number[];
}interface CactusLMGetModelsParams {
forceRefresh?: boolean;
}interface CactusModel {
name: string;
slug: string;
quantization: number;
sizeMb: number;
downloadUrl: string;
supportsToolCalling: boolean;
supportsVision: boolean;
createdAt: Date;
isDownloaded: boolean;
}Cactus offers powerful telemetry for all your projects. Create a token on the Cactus dashboard.
import { CactusConfig } from 'cactus-react-native';
// Enable Telemetry for your project
CactusConfig.telemetryToken = 'your-token-here';
// Disable telemetry
CactusConfig.isTelemetryEnabled = false;- Model Selection - Choose smaller models for faster inference on mobile devices.
- Context Size - Reduce the context size to lower memory usage.
- Memory Management - Always call
destroy()when you're done with models to free up resources.
Check out our example app for a complete React Native implementation.
