Skip to content

callowo-stack/Algorithmic-Trading-Framework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“ˆ Algorithmic Trading Framework

Professional backtesting and strategy development framework implementing the Research-Backtest-Implement methodology

Python License Backtest

🎯 Overview

A production-grade framework for developing, testing, and deploying quantitative trading strategies. Built on the RBI (Research-Backtest-Implement) methodology, this system ensures rigorous validation before any strategy goes live.

Key Capabilities:

  • Historical backtesting with realistic market conditions
  • Multi-strategy portfolio optimization
  • Comprehensive risk management
  • Real-time performance monitoring

πŸ—οΈ The RBI Methodology

πŸ“š Research Phase

Evidence-Based Development

Academic Sources β†’ Market Analysis β†’ Strategy Hypothesis
  • Review academic papers (Google Scholar, SSRN)
  • Analyze market microstructure
  • Identify statistical edges
  • Document trading rules clearly

πŸ“Š Backtest Phase

Rigorous Historical Validation

Clean Data β†’ Strategy Testing β†’ Walk-Forward Optimization β†’ Out-of-Sample Validation
  • Multi-timeframe testing (1min to 1day)
  • Transaction cost modeling (commissions, slippage)
  • Realistic order execution simulation
  • Statistical significance testing

πŸ’» Implement Phase

Controlled Deployment

Paper Trading β†’ Small Live Position β†’ Gradual Scaling β†’ Full Deployment
  • Start with $10 positions
  • Monitor for 2 weeks minimum
  • Scale only after consistent performance
  • Continuous risk monitoring

✨ Key Features

Backtesting Engine

  • High-fidelity simulation: Models real market conditions including spreads, slippage, and partial fills
  • Multi-asset support: Stocks, crypto, futures
  • Multiple timeframes: From 1-minute to daily data
  • Performance metrics: Sharpe ratio, max drawdown, win rate, profit factor

Risk Management

  • Position sizing: Kelly criterion, fixed fractional, volatility-based
  • Stop losses: Time-based, price-based, volatility-adjusted
  • Portfolio limits: Maximum exposure per asset, sector, total
  • Drawdown protection: Automatic position reduction on losses

Strategy Library

Example strategies included (for educational purposes):

  • Mean Reversion: RSI-based oversold/overbought
  • Trend Following: Moving average crossovers
  • Momentum: Breakout with volume confirmation
  • Statistical Arbitrage: Pairs trading framework

Data Pipeline

  • Multi-source support: Yahoo Finance, Alpha Vantage, custom APIs
  • Data validation: Automatic cleaning and outlier detection
  • Caching system: Fast backtests with local data storage
  • Real-time feeds: WebSocket integration for live trading

πŸ“ Project Structure

Algorithmic-Trading-Framework/
β”‚
β”œβ”€β”€ strategies/
β”‚   β”œβ”€β”€ base_strategy.py        # Abstract strategy class
β”‚   β”œβ”€β”€ mean_reversion.py       # RSI-based mean reversion
β”‚   β”œβ”€β”€ trend_following.py      # MA crossover strategy
β”‚   └── momentum_breakout.py    # Volume-confirmed breakouts
β”‚
β”œβ”€β”€ backtesting/
β”‚   β”œβ”€β”€ engine.py               # Core backtesting engine
β”‚   β”œβ”€β”€ broker.py               # Order execution simulation
β”‚   β”œβ”€β”€ metrics.py              # Performance calculations
β”‚   └── optimizer.py            # Parameter optimization
β”‚
β”œβ”€β”€ risk/
β”‚   β”œβ”€β”€ position_sizer.py       # Position sizing algorithms
β”‚   β”œβ”€β”€ risk_manager.py         # Real-time risk monitoring
β”‚   └── portfolio_manager.py    # Multi-strategy allocation
β”‚
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ data_fetcher.py         # Market data retrieval
β”‚   β”œβ”€β”€ data_cleaner.py         # Data preprocessing
β”‚   └── data_cache.py           # Local data storage
β”‚
β”œβ”€β”€ utils/
β”‚   β”œβ”€β”€ indicators.py           # Technical indicators
β”‚   β”œβ”€β”€ visualizer.py           # Performance charts
β”‚   └── logger.py               # Trade logging
β”‚
β”œβ”€β”€ examples/
β”‚   β”œβ”€β”€ simple_backtest.py      # Basic strategy example
β”‚   β”œβ”€β”€ portfolio_backtest.py   # Multi-strategy example
β”‚   └── optimization.py         # Parameter tuning example
β”‚
β”œβ”€β”€ requirements.txt
β”œβ”€β”€ .env.example
└── README.md

πŸš€ Quick Start

Installation

# Clone the repository
git clone https://github.com/callowo-stack/Algorithmic-Trading-Framework.git
cd Algorithmic-Trading-Framework

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

Simple Backtest Example

from strategies import MeanReversionStrategy
from backtesting import BacktestEngine
from data import DataFetcher

# Fetch historical data
data = DataFetcher.get_data(
    ticker="SPY",
    start_date="2020-01-01",
    end_date="2023-12-31",
    timeframe="1d"
)

# Initialize strategy
strategy = MeanReversionStrategy(
    rsi_period=14,
    rsi_oversold=30,
    rsi_overbought=70
)

# Run backtest
engine = BacktestEngine(
    initial_capital=100000,
    commission=0.001,  # 0.1% per trade
    slippage=0.0005    # 0.05% slippage
)

results = engine.run(strategy, data)

# Display results
print(f"Total Return: {results['total_return']:.2%}")
print(f"Sharpe Ratio: {results['sharpe_ratio']:.2f}")
print(f"Max Drawdown: {results['max_drawdown']:.2%}")
print(f"Win Rate: {results['win_rate']:.2%}")

# Visualize performance
results.plot()

πŸ“Š Strategy Development Workflow

1. Research & Hypothesis

"""
Strategy Hypothesis: RSI Mean Reversion
- Entry: RSI < 30 (oversold)
- Exit: RSI > 70 (overbought)
- Expected Edge: Mean reversion in ranging markets
- Risk: Poor performance in strong trends
"""

2. Implement Strategy

class MyStrategy(BaseStrategy):
    def on_data(self, data):
        rsi = self.calculate_rsi(data, period=14)
        
        if rsi < 30 and not self.position:
            self.buy(size=self.calculate_position_size())
        
        elif rsi > 70 and self.position:
            self.sell()

3. Backtest

# Test on multiple timeframes and assets
results = []
for ticker in ["SPY", "QQQ", "IWM"]:
    result = engine.run(strategy, ticker)
    results.append(result)

# Walk-forward optimization
optimized = engine.optimize(
    strategy,
    param_ranges={'rsi_period': range(10, 20)},
    walk_forward_windows=12
)

4. Analyze Results

# Check statistical significance
if results['trades'] > 100 and results['sharpe'] > 1.5:
    print("Strategy shows promise - proceed to paper trading")
else:
    print("Strategy needs refinement")

🎯 Performance Metrics

The framework calculates comprehensive metrics:

Returns

  • Total Return: Cumulative strategy performance
  • Annualized Return: CAGR over backtest period
  • Monthly Returns: Period-by-period breakdown

Risk

  • Sharpe Ratio: Risk-adjusted returns
  • Sortino Ratio: Downside risk-adjusted returns
  • Maximum Drawdown: Largest peak-to-trough decline
  • Volatility: Standard deviation of returns

Trade Statistics

  • Win Rate: Percentage of profitable trades
  • Profit Factor: Gross profit / Gross loss
  • Average Win/Loss: Mean P&L per trade type
  • Expectancy: Expected value per trade

πŸ”‘ Key Technologies

  • Python 3.11+: Core language
  • Pandas: Data manipulation
  • NumPy: Numerical computations
  • TA-Lib: Technical indicators (optional)
  • Matplotlib/Plotly: Visualization
  • Backtrader: Backtesting framework (alternative engine)

πŸ“ˆ Example Results

Strategy: RSI Mean Reversion (SPY, 2020-2023)
==================================================
Initial Capital:     $100,000
Final Portfolio:     $145,230
Total Return:        45.23%
Annualized Return:   12.67%
Sharpe Ratio:        1.84
Max Drawdown:        -12.4%
Win Rate:            62.3%
Total Trades:        247
Profit Factor:       1.92

⚠️ Risk Disclaimer

For Educational Purposes Only

  • Past performance does not guarantee future results
  • All strategies carry risk of substantial losses
  • This software is provided for learning and research
  • Not financial advice - consult licensed professionals
  • The author assumes no liability for trading losses

πŸŽ“ Educational Value

This project demonstrates:

  1. Quantitative Finance: Strategy development, backtesting, risk metrics
  2. Software Engineering: Clean architecture, design patterns, testing
  3. Data Engineering: Pipeline design, caching, validation
  4. Statistical Analysis: Hypothesis testing, optimization
  5. Production Systems: Logging, monitoring, error handling

πŸ› οΈ Advanced Features

Walk-Forward Optimization

# Optimize on rolling windows
results = engine.walk_forward_optimize(
    strategy=MyStrategy,
    data=data,
    train_period=252,  # 1 year training
    test_period=63,    # 3 months testing
    step=21            # Roll forward monthly
)

Monte Carlo Simulation

# Assess strategy robustness
mc_results = engine.monte_carlo(
    strategy=MyStrategy,
    simulations=1000,
    randomize='returns'  # or 'trades', 'sequence'
)
print(f"95% Confidence Interval: {mc_results['ci_95']}")

Multi-Strategy Portfolio

# Combine multiple strategies
portfolio = Portfolio([
    (MeanReversionStrategy(), 0.4),
    (TrendFollowingStrategy(), 0.3),
    (MomentumStrategy(), 0.3)
])

results = engine.run(portfolio, data)

🀝 Contributing

Improvements welcome:

  • Additional strategy examples
  • More data source integrations
  • Enhanced visualization tools
  • Machine learning strategy templates
  • Real-time trading connectors

πŸ“„ License

MIT License - See LICENSE file

πŸ“¬ Contact

Calvin McCormick
GitHub: @callowo-stack Linkedin: [https://www.linkedin.com/in/calvinm9/] Portfolio: [www.calvinmccormick.com]


Built for systematic strategy development and rigorous backtesting

About

Professional backtesting framework for systematic trading strategies

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages