Professional backtesting and strategy development framework implementing the Research-Backtest-Implement methodology
A production-grade framework for developing, testing, and deploying quantitative trading strategies. Built on the RBI (Research-Backtest-Implement) methodology, this system ensures rigorous validation before any strategy goes live.
Key Capabilities:
- Historical backtesting with realistic market conditions
- Multi-strategy portfolio optimization
- Comprehensive risk management
- Real-time performance monitoring
Evidence-Based Development
Academic Sources β Market Analysis β Strategy Hypothesis
- Review academic papers (Google Scholar, SSRN)
- Analyze market microstructure
- Identify statistical edges
- Document trading rules clearly
Rigorous Historical Validation
Clean Data β Strategy Testing β Walk-Forward Optimization β Out-of-Sample Validation
- Multi-timeframe testing (1min to 1day)
- Transaction cost modeling (commissions, slippage)
- Realistic order execution simulation
- Statistical significance testing
Controlled Deployment
Paper Trading β Small Live Position β Gradual Scaling β Full Deployment
- Start with $10 positions
- Monitor for 2 weeks minimum
- Scale only after consistent performance
- Continuous risk monitoring
- High-fidelity simulation: Models real market conditions including spreads, slippage, and partial fills
- Multi-asset support: Stocks, crypto, futures
- Multiple timeframes: From 1-minute to daily data
- Performance metrics: Sharpe ratio, max drawdown, win rate, profit factor
- Position sizing: Kelly criterion, fixed fractional, volatility-based
- Stop losses: Time-based, price-based, volatility-adjusted
- Portfolio limits: Maximum exposure per asset, sector, total
- Drawdown protection: Automatic position reduction on losses
Example strategies included (for educational purposes):
- Mean Reversion: RSI-based oversold/overbought
- Trend Following: Moving average crossovers
- Momentum: Breakout with volume confirmation
- Statistical Arbitrage: Pairs trading framework
- Multi-source support: Yahoo Finance, Alpha Vantage, custom APIs
- Data validation: Automatic cleaning and outlier detection
- Caching system: Fast backtests with local data storage
- Real-time feeds: WebSocket integration for live trading
Algorithmic-Trading-Framework/
β
βββ strategies/
β βββ base_strategy.py # Abstract strategy class
β βββ mean_reversion.py # RSI-based mean reversion
β βββ trend_following.py # MA crossover strategy
β βββ momentum_breakout.py # Volume-confirmed breakouts
β
βββ backtesting/
β βββ engine.py # Core backtesting engine
β βββ broker.py # Order execution simulation
β βββ metrics.py # Performance calculations
β βββ optimizer.py # Parameter optimization
β
βββ risk/
β βββ position_sizer.py # Position sizing algorithms
β βββ risk_manager.py # Real-time risk monitoring
β βββ portfolio_manager.py # Multi-strategy allocation
β
βββ data/
β βββ data_fetcher.py # Market data retrieval
β βββ data_cleaner.py # Data preprocessing
β βββ data_cache.py # Local data storage
β
βββ utils/
β βββ indicators.py # Technical indicators
β βββ visualizer.py # Performance charts
β βββ logger.py # Trade logging
β
βββ examples/
β βββ simple_backtest.py # Basic strategy example
β βββ portfolio_backtest.py # Multi-strategy example
β βββ optimization.py # Parameter tuning example
β
βββ requirements.txt
βββ .env.example
βββ README.md
# Clone the repository
git clone https://github.com/callowo-stack/Algorithmic-Trading-Framework.git
cd Algorithmic-Trading-Framework
# Create virtual environment
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txtfrom strategies import MeanReversionStrategy
from backtesting import BacktestEngine
from data import DataFetcher
# Fetch historical data
data = DataFetcher.get_data(
ticker="SPY",
start_date="2020-01-01",
end_date="2023-12-31",
timeframe="1d"
)
# Initialize strategy
strategy = MeanReversionStrategy(
rsi_period=14,
rsi_oversold=30,
rsi_overbought=70
)
# Run backtest
engine = BacktestEngine(
initial_capital=100000,
commission=0.001, # 0.1% per trade
slippage=0.0005 # 0.05% slippage
)
results = engine.run(strategy, data)
# Display results
print(f"Total Return: {results['total_return']:.2%}")
print(f"Sharpe Ratio: {results['sharpe_ratio']:.2f}")
print(f"Max Drawdown: {results['max_drawdown']:.2%}")
print(f"Win Rate: {results['win_rate']:.2%}")
# Visualize performance
results.plot()"""
Strategy Hypothesis: RSI Mean Reversion
- Entry: RSI < 30 (oversold)
- Exit: RSI > 70 (overbought)
- Expected Edge: Mean reversion in ranging markets
- Risk: Poor performance in strong trends
"""class MyStrategy(BaseStrategy):
def on_data(self, data):
rsi = self.calculate_rsi(data, period=14)
if rsi < 30 and not self.position:
self.buy(size=self.calculate_position_size())
elif rsi > 70 and self.position:
self.sell()# Test on multiple timeframes and assets
results = []
for ticker in ["SPY", "QQQ", "IWM"]:
result = engine.run(strategy, ticker)
results.append(result)
# Walk-forward optimization
optimized = engine.optimize(
strategy,
param_ranges={'rsi_period': range(10, 20)},
walk_forward_windows=12
)# Check statistical significance
if results['trades'] > 100 and results['sharpe'] > 1.5:
print("Strategy shows promise - proceed to paper trading")
else:
print("Strategy needs refinement")The framework calculates comprehensive metrics:
- Total Return: Cumulative strategy performance
- Annualized Return: CAGR over backtest period
- Monthly Returns: Period-by-period breakdown
- Sharpe Ratio: Risk-adjusted returns
- Sortino Ratio: Downside risk-adjusted returns
- Maximum Drawdown: Largest peak-to-trough decline
- Volatility: Standard deviation of returns
- Win Rate: Percentage of profitable trades
- Profit Factor: Gross profit / Gross loss
- Average Win/Loss: Mean P&L per trade type
- Expectancy: Expected value per trade
- Python 3.11+: Core language
- Pandas: Data manipulation
- NumPy: Numerical computations
- TA-Lib: Technical indicators (optional)
- Matplotlib/Plotly: Visualization
- Backtrader: Backtesting framework (alternative engine)
Strategy: RSI Mean Reversion (SPY, 2020-2023)
==================================================
Initial Capital: $100,000
Final Portfolio: $145,230
Total Return: 45.23%
Annualized Return: 12.67%
Sharpe Ratio: 1.84
Max Drawdown: -12.4%
Win Rate: 62.3%
Total Trades: 247
Profit Factor: 1.92
For Educational Purposes Only
- Past performance does not guarantee future results
- All strategies carry risk of substantial losses
- This software is provided for learning and research
- Not financial advice - consult licensed professionals
- The author assumes no liability for trading losses
This project demonstrates:
- Quantitative Finance: Strategy development, backtesting, risk metrics
- Software Engineering: Clean architecture, design patterns, testing
- Data Engineering: Pipeline design, caching, validation
- Statistical Analysis: Hypothesis testing, optimization
- Production Systems: Logging, monitoring, error handling
# Optimize on rolling windows
results = engine.walk_forward_optimize(
strategy=MyStrategy,
data=data,
train_period=252, # 1 year training
test_period=63, # 3 months testing
step=21 # Roll forward monthly
)# Assess strategy robustness
mc_results = engine.monte_carlo(
strategy=MyStrategy,
simulations=1000,
randomize='returns' # or 'trades', 'sequence'
)
print(f"95% Confidence Interval: {mc_results['ci_95']}")# Combine multiple strategies
portfolio = Portfolio([
(MeanReversionStrategy(), 0.4),
(TrendFollowingStrategy(), 0.3),
(MomentumStrategy(), 0.3)
])
results = engine.run(portfolio, data)Improvements welcome:
- Additional strategy examples
- More data source integrations
- Enhanced visualization tools
- Machine learning strategy templates
- Real-time trading connectors
MIT License - See LICENSE file
Calvin McCormick
GitHub: @callowo-stack
Linkedin: [https://www.linkedin.com/in/calvinm9/]
Portfolio: [www.calvinmccormick.com]
Built for systematic strategy development and rigorous backtesting