|
12 | 12 | for input_file in all_files: |
13 | 13 | data_frame = pd.read_csv(input_file, index_col=None) |
14 | 14 |
|
15 | | - total_cost = pd.DataFrame([float(str(value).strip('$').replace(',','')) \ |
16 | | - for value in data_frame.ix[:, 'Sale Amount']]).sum() |
| 15 | + total_sales = pd.DataFrame([float(str(value).strip('$').replace(',','')) \ |
| 16 | + for value in data_frame.loc[:, 'Sale Amount']]).sum() |
17 | 17 |
|
18 | | - average_cost = pd.DataFrame([float(str(value).strip('$').replace(',','')) \ |
19 | | - for value in data_frame.ix[:, 'Sale Amount']]).mean() |
| 18 | + average_sales = pd.DataFrame([float(str(value).strip('$').replace(',','')) \ |
| 19 | + for value in data_frame.loc[:, 'Sale Amount']]).mean() |
20 | 20 |
|
21 | 21 | data = {'file_name': os.path.basename(input_file), |
22 | | - 'total_cost': total_cost, |
23 | | - 'average_cost': average_cost} |
| 22 | + 'total_sales': total_sales, |
| 23 | + 'average_sales': average_sales} |
24 | 24 |
|
25 | | - all_data_frames.append(pd.DataFrame(data, columns=['file_name', 'total_cost', 'average_cost'])) |
| 25 | + all_data_frames.append(pd.DataFrame(data, columns=['file_name', 'total_sales', 'average_sales'])) |
26 | 26 |
|
27 | 27 | data_frames_concat = pd.concat(all_data_frames, axis=0, ignore_index=True) |
28 | 28 |
|
|
0 commit comments