Customer acquisition costs 5-7x more than retention. This system identifies at-risk customers before they leave, enabling targeted retention campaigns that reduce churn by 15-20%.
Source: Kaggle E-Commerce Dataset Size: 22,000 transactions, 17 features Target: churn_90d - Will customer churn within 90 days?
Key Features: Session duration, customer rating, purchase history, delivery time, payment method, device type
git clone https://github.com/codeWhizperer/Capstone-project.git
cd Capstone-projectdocker build -t churn-predictor .
docker run -d -p 9696:9696 churn-predictorcurl http://localhost:9696/predictpipenv install
pipenv shellpython predict.pypython predict-test.py {
'Age':32,
'Gender': 'Male',
'City': 'Istanbul',
'Device_Type': 'Mobile',
'Payment_Method': 'Credit Card',
'Product_Category': 'Electronics',
'Is_Returning_Customer': 'False',
'Unit_Price': 804.06,
'Quantity': 1,
'Total_Amount': 574.78,
'Session_Duration_Minutes': 8,
'Pages_Viewed': 10,
'Customer_Rating': 4,
'Delivery_Time_Days': 1,
'Discount_Amount': 229.28
}{
"churn_probability": float,
"churn_probability": bool,
}├── data/ # Dataset files
├── notebooks/
│ └── project.ipynb # EDA & experimentation
├── train.py # Model training
├── predict.py # Flask API
├── predict-test.py # Tests
├── model_C=10.bin # Trained model
├── Dockerfile # Container config
├── Pipfile / Pipfile.lock # Dependencies
└── README.mdPython 3.12 | XGBoost | Pandas | Flask | Docker | Pipenv