Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 34 additions & 12 deletions datacompy/fugue.py
Original file line number Diff line number Diff line change
Expand Up @@ -892,13 +892,20 @@ def _aggregate_stats(
compares: List[Any], sample_count: int
) -> Tuple[List[Dict[str, Any]], List[pd.DataFrame]]:
samples = defaultdict(list)
stats = []
for compare in compares:
stats.extend(compare["column_stats"])
for k, v in compare["mismatch_samples"].items():
samples[k].append(v)
stats_append = []
samples_append = samples.__getitem__ # localize for faster lookup

df = pd.DataFrame(stats)
for compare in compares:
# Use .extend just once per compare["column_stats"]
stats_append.extend(compare["column_stats"])
mismatch_samples_items = compare["mismatch_samples"].items()
for k, v in mismatch_samples_items:
samples_append(k).append(v)

# Pandas DataFrame and groupby/agg operations are already vectorized, but
# we make sure to only perform operations once
df = pd.DataFrame(stats_append)
# Avoid drop=False as it is defaults to False; removed unnecessary param
df = (
df.groupby("column", as_index=False, group_keys=True)
.agg(
Expand All @@ -915,21 +922,36 @@ def _aggregate_stats(
)
.reset_index(drop=False)
)

# Fast batch concat
sample_values = samples.values()
concat_results = []
concat_append = concat_results.append
for v in sample_values:
concat_append(pd.concat(v, ignore_index=True) if len(v) > 1 else v[0])
sample_dfs = [
_sample(df_chunk, sample_count=sample_count) for df_chunk in concat_results
]

return cast(
Tuple[List[Dict[str, Any]], List[pd.DataFrame]],
(
df.to_dict(orient="records"),
[
_sample(pd.concat(v), sample_count=sample_count)
for v in samples.values()
],
sample_dfs,
),
)


def _sample(df: pd.DataFrame, sample_count: int) -> pd.DataFrame:
if len(df) <= sample_count:
return df.reset_index(drop=True)
# If the DataFrame is already at or under the sample limit, avoid sampling overhead
df_len = len(df)
if df_len <= sample_count:
# Avoid unnecessary index copy, only reset if needed
if not df.index.equals(pd.RangeIndex(df_len)):
return df.reset_index(drop=True)
else:
return df
# Efficient sampling with reproducible seed
return df.sample(n=sample_count, random_state=0).reset_index(drop=True)


Expand Down