Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 25, 2025

📄 17% (0.17x) speedup for InteractiveMigrationQuestioner.ask_rename_model in django/db/migrations/questioner.py

⏱️ Runtime : 641 microseconds 548 microseconds (best of 319 runs)

📝 Explanation and details

The optimized code achieves a 17% speedup through two key improvements:

1. Loop Logic Restructuring in _boolean_input():
The original code used a complex while condition that performed multiple operations on each iteration:

  • not result or result[0].lower() not in "yn" required string indexing, lowercasing, and string membership checking every loop
  • This caused 1031 hits on the condition line, consuming 10.8% of total execution time

The optimized version restructures this as:

  • while True: with explicit conditional branches inside
  • Extracts ans = result[0].lower() once per iteration
  • Uses set membership ans in {"y", "n"} which is faster than string membership for single characters
  • Reduces redundant string operations and provides clearer control flow

2. String Formatting Optimization in ask_rename_model():
The original code used old-style % formatting with a separate format call:

msg = "Was the model %s.%s renamed to %s? [y/N]"
# ... later in function call
msg % (old_model_state.app_label, old_model_state.name, new_model_state.name)

The optimized version uses f-string formatting done once upfront:

msg = f"Was the model {old_model_state.app_label}.{old_model_state.name} renamed to {new_model_state.name}? [y/N]"

F-strings are generally faster than % formatting, and doing the formatting once rather than during the function call eliminates repeated attribute access and formatting overhead.

Performance Impact by Test Case:

  • Basic cases (simple y/n responses): 8-14% improvement, showing the string formatting optimization's impact
  • Edge cases (invalid inputs): 4-18% improvement, with larger gains when the loop restructuring matters more
  • Large scale cases: 18-37% improvement, particularly notable with long model names (37% faster) where string operations dominate, and bulk operations (18-19% faster) where the cumulative effect is most apparent

The optimizations are most effective for scenarios with either many rename prompts or complex model names, while still providing consistent improvements for simple use cases.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 968 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import sys
from io import StringIO

# imports
import pytest
from django.db.migrations.questioner import InteractiveMigrationQuestioner


# Minimal stubs for OutputWrapper and model state objects for testing
class OutputWrapper:
    def __init__(self, out, ending="\n"):
        self._out = out
        self.style_func = lambda x: x  # No styling for tests
        self.ending = ending

    def write(self, msg="", style_func=None, ending=None):
        ending = self.ending if ending is None else ending
        if ending and not msg.endswith(ending):
            msg += ending
        style_func = style_func or self.style_func
        self._out.write(style_func(msg))

# Model state stub
class ModelState:
    def __init__(self, app_label, name):
        self.app_label = app_label
        self.name = name

# Helper for simulating input and capturing output
class InputOutputSimulator:
    def __init__(self, inputs):
        self.inputs = inputs
        self.input_index = 0
        self.output = StringIO()

    def input(self, prompt=None):
        # Ignore prompt, as OutputWrapper writes to self.output
        if self.input_index < len(self.inputs):
            val = self.inputs[self.input_index]
            self.input_index += 1
            return val
        return ""

    def get_output(self):
        return self.output.getvalue()

@pytest.fixture
def patch_input(monkeypatch):
    # Helper to patch input() for each test
    def _patch(inputs):
        simulator = InputOutputSimulator(inputs)
        monkeypatch.setattr("builtins.input", simulator.input)
        return simulator
    return _patch

# -------------------------
# Basic Test Cases
# -------------------------

def test_rename_model_yes_response(patch_input):
    # User answers 'y' to the prompt
    simulator = patch_input(["y"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("app", "OldModel")
    new = ModelState("app", "NewModel")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.55μs -> 2.31μs (10.5% faster)
    output = simulator.get_output()

def test_rename_model_no_response(patch_input):
    # User answers 'n' to the prompt
    simulator = patch_input(["n"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("foo", "Bar")
    new = ModelState("foo", "Baz")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.35μs -> 2.15μs (9.27% faster)
    output = simulator.get_output()

def test_rename_model_default_response(patch_input):
    # User presses enter (empty input), should default to False
    simulator = patch_input([""])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("x", "A")
    new = ModelState("x", "B")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.00μs -> 1.75μs (14.1% faster)

def test_rename_model_yes_case_insensitive(patch_input):
    # User answers 'Y' (uppercase), should be accepted
    simulator = patch_input(["Y"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("y", "Alpha")
    new = ModelState("y", "Beta")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.38μs -> 2.13μs (11.8% faster)

def test_rename_model_no_case_insensitive(patch_input):
    # User answers 'N' (uppercase), should be accepted
    simulator = patch_input(["N"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("z", "Gamma")
    new = ModelState("z", "Delta")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.27μs -> 2.04μs (11.4% faster)

# -------------------------
# Edge Test Cases
# -------------------------

def test_invalid_then_yes_response(patch_input):
    # User enters invalid response, then 'y'
    simulator = patch_input(["maybe", "y"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("edge", "Model")
    new = ModelState("edge", "RenamedModel")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.81μs -> 2.67μs (5.25% faster)
    output = simulator.get_output()

def test_invalid_then_no_response(patch_input):
    # User enters invalid response, then 'n'
    simulator = patch_input(["what", "n"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("edge", "Model")
    new = ModelState("edge", "RenamedModel")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.74μs -> 2.54μs (8.07% faster)

def test_multiple_invalid_then_yes(patch_input):
    # Several invalid responses before valid 'y'
    simulator = patch_input(["", "maybe", "yes", "y"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("edge", "Model")
    new = ModelState("edge", "RenamedModel")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 1.82μs -> 1.64μs (11.4% faster)
    output = simulator.get_output()

def test_whitespace_input_then_yes(patch_input):
    # User enters whitespace, then 'y'
    simulator = patch_input(["   ", "y"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("edge", "Model")
    new = ModelState("edge", "RenamedModel")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.69μs -> 2.58μs (4.50% faster)

def test_whitespace_input_then_no(patch_input):
    # User enters whitespace, then 'n'
    simulator = patch_input(["   ", "n"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("edge", "Model")
    new = ModelState("edge", "RenamedModel")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.73μs -> 2.46μs (11.3% faster)

def test_model_names_with_special_characters(patch_input):
    # Model names with special characters
    simulator = patch_input(["y"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("special", "Model$123")
    new = ModelState("special", "Renamed@Model!")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.25μs -> 2.05μs (9.62% faster)
    output = simulator.get_output()

def test_model_names_empty_strings(patch_input):
    # Model names as empty strings
    simulator = patch_input(["n"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("", "")
    new = ModelState("", "")
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.27μs -> 1.99μs (14.1% faster)
    output = simulator.get_output()

def test_model_names_long_strings(patch_input):
    # Very long model names
    long_name = "A" * 500
    simulator = patch_input(["y"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState("longapp", long_name)
    new = ModelState("longapp", long_name[::-1])
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 3.09μs -> 2.54μs (21.9% faster)
    output = simulator.get_output()

# -------------------------
# Large Scale Test Cases
# -------------------------

def test_many_rename_prompts_yes(patch_input):
    # Simulate many rename prompts, all answered 'y'
    num_models = 100
    simulator = patch_input(["y"] * num_models)
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    results = []
    for i in range(num_models):
        old = ModelState(f"app{i}", f"Model{i}")
        new = ModelState(f"app{i}", f"RenamedModel{i}")
        codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 64.4μs -> 54.3μs (18.5% faster)
        results.append(result)
    output = simulator.get_output()
    # Should contain all prompts
    for i in range(num_models):
        pass

def test_many_rename_prompts_no(patch_input):
    # Simulate many rename prompts, all answered 'n'
    num_models = 100
    simulator = patch_input(["n"] * num_models)
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    results = []
    for i in range(num_models):
        old = ModelState(f"app{i}", f"Model{i}")
        new = ModelState(f"app{i}", f"RenamedModel{i}")
        codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 60.3μs -> 50.8μs (18.5% faster)
        results.append(result)
    output = simulator.get_output()
    # Should contain all prompts
    for i in range(num_models):
        pass

def test_many_invalid_then_yes(patch_input):
    # For each prompt, first invalid, then 'y'
    num_models = 50
    inputs = []
    for i in range(num_models):
        inputs.extend(["invalid", "y"])
    simulator = patch_input(inputs)
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    results = []
    for i in range(num_models):
        old = ModelState(f"app{i}", f"Model{i}")
        new = ModelState(f"app{i}", f"RenamedModel{i}")
        codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 42.5μs -> 37.7μs (12.7% faster)
        results.append(result)
    output = simulator.get_output()

def test_large_model_name_and_app_label(patch_input):
    # Large app_label and model names, but not exceeding 1000 chars
    app_label = "app" * 250  # 750 chars
    model_name = "model" * 50  # 250 chars
    simulator = patch_input(["y"])
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(simulator.output))
    old = ModelState(app_label, model_name)
    new = ModelState(app_label, model_name[::-1])
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 3.02μs -> 2.44μs (24.1% faster)
    output = simulator.get_output()
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import sys
from io import StringIO

# imports
import pytest
from django.db.migrations.questioner import InteractiveMigrationQuestioner


# Minimal OutputWrapper for test purposes
class OutputWrapper:
    def __init__(self, out, ending="\n"):
        self._out = out
        self.ending = ending

    def write(self, msg="", style_func=None, ending=None):
        ending = self.ending if ending is None else ending
        if ending and not msg.endswith(ending):
            msg += ending
        if style_func:
            msg = style_func(msg)
        self._out.write(msg)

# Minimal ModelState for test purposes
class ModelState:
    def __init__(self, app_label, name):
        self.app_label = app_label
        self.name = name

# Helper to patch input
class InputPatcher:
    def __init__(self, responses):
        self.responses = responses
        self.index = 0

    def __call__(self, *args, **kwargs):
        if self.index < len(self.responses):
            resp = self.responses[self.index]
            self.index += 1
            return resp
        raise EOFError("No more input responses.")

@pytest.fixture
def output_buffer():
    return StringIO()

# -------- Basic Test Cases --------

def test_basic_yes_response(monkeypatch, output_buffer):
    """Test: User answers 'y' (yes) to rename prompt."""
    monkeypatch.setattr('builtins.input', InputPatcher(['y']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.52μs -> 2.32μs (8.35% faster)
    # Check prompt output
    output = output_buffer.getvalue()

def test_basic_no_response(monkeypatch, output_buffer):
    """Test: User answers 'n' (no) to rename prompt."""
    monkeypatch.setattr('builtins.input', InputPatcher(['n']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.35μs -> 2.09μs (12.5% faster)
    output = output_buffer.getvalue()

def test_basic_default_response(monkeypatch, output_buffer):
    """Test: User presses Enter (empty input), should default to False."""
    monkeypatch.setattr('builtins.input', InputPatcher(['']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 1.92μs -> 1.71μs (12.2% faster)

def test_basic_yes_uppercase(monkeypatch, output_buffer):
    """Test: User answers 'Y' (uppercase yes)."""
    monkeypatch.setattr('builtins.input', InputPatcher(['Y']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.20μs -> 2.03μs (8.58% faster)

def test_basic_no_uppercase(monkeypatch, output_buffer):
    """Test: User answers 'N' (uppercase no)."""
    monkeypatch.setattr('builtins.input', InputPatcher(['N']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.24μs -> 1.96μs (13.9% faster)

# -------- Edge Test Cases --------

def test_edge_invalid_then_yes(monkeypatch, output_buffer):
    """Test: User enters invalid input, then 'y'."""
    monkeypatch.setattr('builtins.input', InputPatcher(['maybe', 'y']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.89μs -> 2.65μs (9.14% faster)
    output = output_buffer.getvalue()

def test_edge_invalid_then_no(monkeypatch, output_buffer):
    """Test: User enters invalid input, then 'n'."""
    monkeypatch.setattr('builtins.input', InputPatcher(['foo', 'n']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.77μs -> 2.66μs (3.91% faster)

def test_edge_multiple_invalid_then_yes(monkeypatch, output_buffer):
    """Test: User enters several invalid inputs, then 'y'."""
    monkeypatch.setattr('builtins.input', InputPatcher(['', '123', 'yes', 'y']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 1.82μs -> 1.54μs (17.9% faster)

def test_edge_whitespace_input(monkeypatch, output_buffer):
    """Test: User enters whitespace, then 'n'."""
    monkeypatch.setattr('builtins.input', InputPatcher(['   ', 'n']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.80μs -> 2.60μs (7.74% faster)

def test_edge_input_with_trailing_spaces(monkeypatch, output_buffer):
    """Test: User enters 'y ' with trailing space."""
    monkeypatch.setattr('builtins.input', InputPatcher(['y ']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.16μs -> 1.88μs (15.2% faster)


def test_edge_input_with_long_string(monkeypatch, output_buffer):
    """Test: User enters a long invalid string, then 'y'."""
    monkeypatch.setattr('builtins.input', InputPatcher(['thisisnotvalid', 'y']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 3.98μs -> 3.46μs (15.2% faster)

def test_edge_input_with_yes_word(monkeypatch, output_buffer):
    """Test: User enters 'yes' (should accept since first char is 'y')."""
    monkeypatch.setattr('builtins.input', InputPatcher(['yes']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.58μs -> 2.24μs (15.2% faster)

def test_edge_input_with_no_word(monkeypatch, output_buffer):
    """Test: User enters 'no' (should accept since first char is 'n')."""
    monkeypatch.setattr('builtins.input', InputPatcher(['no']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.42μs -> 2.09μs (15.5% faster)

def test_edge_model_names_with_special_chars(monkeypatch, output_buffer):
    """Test: Model names with special characters."""
    monkeypatch.setattr('builtins.input', InputPatcher(['y']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('my-app', 'Model$123')
    new = ModelState('my-app', 'Model#456')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.29μs -> 2.07μs (10.8% faster)
    output = output_buffer.getvalue()

def test_edge_model_names_empty(monkeypatch, output_buffer):
    """Test: Empty model names."""
    monkeypatch.setattr('builtins.input', InputPatcher(['n']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('', '')
    new = ModelState('', '')
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 2.37μs -> 2.00μs (18.8% faster)
    output = output_buffer.getvalue()

# -------- Large Scale Test Cases --------

def test_large_scale_many_models(monkeypatch, output_buffer):
    """Test: Running ask_rename_model on many different models."""
    # Prepare 500 model renames and always answer 'y'
    monkeypatch.setattr('builtins.input', InputPatcher(['y'] * 500))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    for i in range(500):
        old = ModelState('app', f'OldModel{i}')
        new = ModelState('app', f'NewModel{i}')
        codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 290μs -> 244μs (18.9% faster)

def test_large_scale_long_model_names(monkeypatch, output_buffer):
    """Test: Model names are very long strings."""
    long_name = 'A' * 200
    monkeypatch.setattr('builtins.input', InputPatcher(['y']))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', long_name)
    new = ModelState('app', long_name[::-1])
    codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 3.10μs -> 2.26μs (37.1% faster)
    output = output_buffer.getvalue()

def test_large_scale_varied_inputs(monkeypatch, output_buffer):
    """Test: 100 varied answers, alternating 'y', 'n', '', 'Y', 'N', 'yes', 'no'."""
    answers = ['y', 'n', '', 'Y', 'N', 'yes', 'no'] * 15
    monkeypatch.setattr('builtins.input', InputPatcher(answers))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    expected = []
    for i, ans in enumerate(answers[:100]):
        old = ModelState('app', f'OldModel{i}')
        new = ModelState('app', f'NewModel{i}')
        codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 60.2μs -> 50.5μs (19.2% faster)
        # Determine expected result
        if ans == '' or ans[0].lower() == 'n':
            expected.append(False)
        else:
            expected.append(True)

def test_large_scale_invalid_then_valid(monkeypatch, output_buffer):
    """Test: 50 times, user enters invalid then 'y'."""
    answers = []
    for _ in range(50):
        answers.extend(['invalid', 'y'])
    monkeypatch.setattr('builtins.input', InputPatcher(answers))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    for i in range(50):
        old = ModelState('app', f'OldModel{i}')
        new = ModelState('app', f'NewModel{i}')
        codeflash_output = questioner.ask_rename_model(old, new); result = codeflash_output # 42.8μs -> 38.3μs (11.6% faster)

def test_large_scale_all_invalid(monkeypatch, output_buffer):
    """Test: 10 times, all inputs are invalid, should raise EOFError after exhausting."""
    answers = ['invalid'] * 10
    monkeypatch.setattr('builtins.input', InputPatcher(answers))
    questioner = InteractiveMigrationQuestioner(prompt_output=OutputWrapper(output_buffer, ending=""))
    old = ModelState('app', 'OldModel')
    new = ModelState('app', 'NewModel')
    with pytest.raises(EOFError):
        questioner.ask_rename_model(old, new) # 5.21μs -> 5.09μs (2.24% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-InteractiveMigrationQuestioner.ask_rename_model-mh6nw9ie and push.

Codeflash

The optimized code achieves a 17% speedup through two key improvements:

**1. Loop Logic Restructuring in `_boolean_input()`:**
The original code used a complex `while` condition that performed multiple operations on each iteration:
- `not result or result[0].lower() not in "yn"` required string indexing, lowercasing, and string membership checking every loop
- This caused 1031 hits on the condition line, consuming 10.8% of total execution time

The optimized version restructures this as:
- `while True:` with explicit conditional branches inside
- Extracts `ans = result[0].lower()` once per iteration 
- Uses set membership `ans in {"y", "n"}` which is faster than string membership for single characters
- Reduces redundant string operations and provides clearer control flow

**2. String Formatting Optimization in `ask_rename_model()`:**
The original code used old-style `%` formatting with a separate format call:
```python
msg = "Was the model %s.%s renamed to %s? [y/N]"
# ... later in function call
msg % (old_model_state.app_label, old_model_state.name, new_model_state.name)
```

The optimized version uses f-string formatting done once upfront:
```python
msg = f"Was the model {old_model_state.app_label}.{old_model_state.name} renamed to {new_model_state.name}? [y/N]"
```

F-strings are generally faster than `%` formatting, and doing the formatting once rather than during the function call eliminates repeated attribute access and formatting overhead.

**Performance Impact by Test Case:**
- **Basic cases** (simple y/n responses): 8-14% improvement, showing the string formatting optimization's impact
- **Edge cases** (invalid inputs): 4-18% improvement, with larger gains when the loop restructuring matters more
- **Large scale cases**: 18-37% improvement, particularly notable with long model names (37% faster) where string operations dominate, and bulk operations (18-19% faster) where the cumulative effect is most apparent

The optimizations are most effective for scenarios with either many rename prompts or complex model names, while still providing consistent improvements for simple use cases.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 25, 2025 19:17
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash labels Oct 25, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants