-
Notifications
You must be signed in to change notification settings - Fork 3
Closed
Description
Area of Concern
- Server
Server Info
Server version: 2.9.5
System: Windows
Operating System: Windows (Windows 11 24H2)
CPUs: Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz (Intel)
1 CPU x 6 cores. 12 logical processors (x64)
GPU (Primary): Quadro P1000 (4 GiB) (NVIDIA)
Driver: 552.74, CUDA: 12.4 (up to: 12.4), Compute: 6.1, cuDNN:
System RAM: 32 GiB
Platform: Windows
BuildConfig: Release
Execution Env: Native
Runtime Env: Production
Runtimes installed:
.NET runtime: 9.0.0
.NET SDK: 7.0.410
Default Python: Not found
Go: Not found
NodeJS: 18.17.0
Rust: Not found
Video adapter info:
NVIDIA Quadro P1000:
Driver Version 31.0.15.5274
Video Processor Quadro P1000
System GPU info:
GPU 3D Usage 2%
GPU RAM Usage 3.8 GiB
Global Environment variables:
CPAI_APPROOTPATH = <root>
CPAI_PORT = 32168
Describe the bug
Using CPAI within the context of Blue Iris NVR software. When Coral TPU object detection module is enabled, an unhandled exception frequently occurs with error message "Unable to run inference: There is at least 1 reference to internal data in the interpreter in the form of a numpy array or slice. Be sure to only hold the function returned from tensor() if you are using raw data access.".
Actual error:
T-394 msec [475 msec]
[
{
"api":"objects",
"found":{
"success":true,
"inferenceMs":7,
"processMs":85,
"message":"No objects found",
"count":0,
"predictions":[
]
,
"moduleId":"ObjectDetectionCoral",
"moduleName":"Object Detection (Coral)",
"code":200,
"command":"detect",
"requestId":"d1c26a48-68ae-4714-8725-807e8d1aa788",
"inferenceDevice":"TPU",
"analysisRoundTripMs":161,
"processedBy":"localhost",
"timestampUTC":"Thu,
19 Dec 2024 21:07:38 GMT"}
}
,
{
"api":"ipcam-dark",
"found":{
"success":false,
"error":"Unable to run inference: There is at least 1 reference to internal data\n in the interpreter in the form of a numpy array or slice. Be sure to\n only hold the function returned from tensor() if you are using raw\n data access.",
"inferenceMs":0,
"processMs":80,
"predictions":[
]
,
"message":"",
"count":0,
"moduleId":"ObjectDetectionCoral",
"moduleName":"Object Detection (Coral)",
"code":500,
"command":"custom",
"requestId":"3634a008-e41c-4179-bd56-697a75ae66f4",
"inferenceDevice":"TPU",
"analysisRoundTripMs":198,
"processedBy":"localhost",
"timestampUTC":"Thu,
19 Dec 2024 21:07:38 GMT"}
}
]
Expected behavior
CPAI should work similarly to how it does when using CPU/GPU hardware and process the image handed to it, returning either a "No objects found" payload
T-28 msec [380 msec] *
[
{
"api":"objects",
"found":{
"message":"No objects found",
"count":0,
"predictions":[
]
,
"inferenceDevice":"GPU",
"inferenceMs":147,
"processMs":148,
"analysisRoundTripMs":154,
"success":true,
"moduleName":"Object Detection (YOLOv5 .NET)",
"moduleId":"ObjectDetectionYOLOv5Net",
"command":"detect",
"requestId":"11dd1b12-31be-461d-9858-6e8b971ac252",
"processedBy":"localhost",
"timestampUTC":"Wed,
11 Dec 2024 07:13:35 GMT"}
}
,
{
"api":"ipcam-combined",
"found":{
"message":"No objects found",
"count":0,
"predictions":[
]
,
"inferenceDevice":"GPU",
"inferenceMs":150,
"processMs":150,
"analysisRoundTripMs":154,
"success":true,
"moduleName":"Object Detection (YOLOv5 .NET)",
"moduleId":"ObjectDetectionYOLOv5Net",
"command":"custom",
"requestId":"dc6a3e7d-d679-4832-8023-24aee843fe1b",
"processedBy":"localhost",
"timestampUTC":"Wed,
11 Dec 2024 07:13:35 GMT"}
}
]
or an "object found" payload.
T+206 msec [576 msec] *
[
{
"api":"objects",
"found":{
"message":"Found person,
chair",
"count":2,
"predictions":[
{
"label":"person",
"confidence":0.8436014,
"y_min":1410,
"x_min":1347,
"y_max":1724,
"x_max":1937}
,
{
"label":"chair",
"confidence":0.47627652,
"y_min":810,
"x_min":0,
"y_max":1366,
"x_max":653}
]
,
"inferenceDevice":"GPU",
"inferenceMs":237,
"processMs":237,
"analysisRoundTripMs":245,
"success":true,
"moduleName":"Object Detection (YOLOv5 .NET)",
"moduleId":"ObjectDetectionYOLOv5Net",
"command":"detect",
"requestId":"807846c8-be05-44c4-96b4-a0377700a893",
"processedBy":"localhost",
"timestampUTC":"Wed,
11 Dec 2024 19:47:03 GMT"}
}
,
{
"api":"ipcam-combined",
"found":{
"message":"No objects found",
"count":0,
"predictions":[
]
,
"inferenceDevice":"GPU",
"inferenceMs":196,
"processMs":196,
"analysisRoundTripMs":211,
"success":true,
"moduleName":"Object Detection (YOLOv5 .NET)",
"moduleId":"ObjectDetectionYOLOv5Net",
"command":"custom",
"requestId":"7fc2b07d-d5f5-49ef-bedc-446bd14a6e5e",
"processedBy":"localhost",
"timestampUTC":"Wed,
11 Dec 2024 19:47:04 GMT"}
}
]
Additional context
https://coral.ai/products/m2-accelerator-ae
[Hardware Resources]
Resource Device Status
<snip>
IRQ 4294967272 Coral PCIe Accelerator OK
IRQ 4294967271 Coral PCIe Accelerator OK
IRQ 4294967270 Coral PCIe Accelerator OK
IRQ 4294967269 Coral PCIe Accelerator OK
<snip>
Resource Device Status
<snip>
0xFC000-0xFFFFF Coral PCIe Accelerator OK
0x100000-0x1FFFFF Coral PCIe Accelerator OK
<snip>
[System Drivers]
Name Description File Type Started Start Mode State Status Error Control Accept Pause Accept Stop
<snip>
coral coral c:\windows\system32\drivers\coral.sys Kernel Driver Yes Manual Running OK Normal No Yes
<snip>
Metadata
Metadata
Assignees
Labels
No labels
