Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified __pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_k_means/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_k_means/__pycache__/build.cpython-36.pyc
Binary file not shown.
29 changes: 23 additions & 6 deletions q01_k_means/build.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,35 @@
# %load q01_k_means/build.py
# Default imports
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
plt.switch_backend('agg')
from sklearn import datasets


digits = datasets.load_digits()

X_train = digits.images
y_train = digits.target

# Write your solution here :




def k_means(X_train,y_train, cluster = 10,random_state = 9):
X = X_train.reshape((len(X_train), -1))
kmeans = KMeans(n_clusters= cluster, random_state= random_state).fit(X)
len_list = []
limit = 21
for c in range(0, cluster):
print('C: ',c)
image = X_train[(kmeans.labels_ == c) & (y_train == c)]
temp = len(image)
for i in range(0, temp):
if(temp <= limit):
ax='ax'
fig = plt.figure()
value = i+1
ax += str(value)
ax = fig.add_subplot(1,temp,i+1)
plt.axis('off')
ax.imshow(image[i])
plt.show()

else:
break

Binary file modified q01_k_means/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_k_means/tests/__pycache__/test_q01_k_means.cpython-36.pyc
Binary file not shown.
Binary file modified q02_hierarchy_clustering/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q02_hierarchy_clustering/__pycache__/build.cpython-36.pyc
Binary file not shown.
43 changes: 43 additions & 0 deletions q02_hierarchy_clustering/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q02_hierarchy_clustering/build.py
# Default imports

import pandas as pd
Expand All @@ -11,5 +12,47 @@
df = pd.DataFrame(scale(digits.data), index=digits.target)

# Write your solution here :
def hierarchy_clustering(df):
Z_avg = linkage(df, 'average')
Z_single = linkage(df, 'single')
Z_complete = linkage(df, 'complete')
Z_ward = linkage(df, 'ward')

plt.figure(figsize=(15, 10))
plt.subplot(411)
dendrogram(
Z_avg,
leaf_rotation=90.,
leaf_font_size=3.,
)
plt.title('Average')

plt.figure(figsize=(15, 10))
plt.subplot(412)
dendrogram(
Z_single,
leaf_rotation=90.,
leaf_font_size=3.,
)
plt.title('Single')

plt.subplot(413)
dendrogram(
Z_complete,
leaf_rotation=90.,
leaf_font_size=3.,
)
plt.title('Complete')

plt.subplot(414)
dendrogram(
Z_ward,
leaf_rotation=90.,
leaf_font_size=3.,
)
plt.title('Ward')
plt.xlabel('sample index')
plt.ylabel('distance')

plt.show()

Binary file not shown.
Binary file not shown.