Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified __pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_k_means/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_k_means/__pycache__/build.cpython-36.pyc
Binary file not shown.
11 changes: 10 additions & 1 deletion q01_k_means/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q01_k_means/build.py
# Default imports
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
Expand All @@ -9,8 +10,16 @@

X_train = digits.images
y_train = digits.target
import numpy as np
X = np.reshape(X_train, (len(X_train), -1))

def k_means(X_train,y_train,cluster=10,random_state=9):
km = KMeans(init='random', n_clusters=cluster)
km.fit(X)

plt.imshow(X)
plt.show()

# Write your solution here :



Expand Down
Binary file modified q01_k_means/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_k_means/tests/__pycache__/test_q01_k_means.cpython-36.pyc
Binary file not shown.
Binary file modified q02_hierarchy_clustering/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q02_hierarchy_clustering/__pycache__/build.cpython-36.pyc
Binary file not shown.
17 changes: 16 additions & 1 deletion q02_hierarchy_clustering/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q02_hierarchy_clustering/build.py
# Default imports

import pandas as pd
Expand All @@ -9,7 +10,21 @@

digits = datasets.load_digits()
df = pd.DataFrame(scale(digits.data), index=digits.target)
def hierarchy_clustering(df):
fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(50, 18))

for linkage, cluster, ax in zip(
[hierarchy.complete(df), hierarchy.average(df), hierarchy.single(df), hierarchy.ward(df)],
['c1', 'c2', 'c3', 'c4'],
[ax1, ax2, ax3, ax4]):
cluster = hierarchy.dendrogram(linkage, labels=df.index, p=12, truncate_mode='lastp', orientation='top',
color_threshold=0, leaf_font_size=10, distance_sort=True, ax=ax)
ax1.set_title('Complete Linkage')
ax2.set_title('Average Linkage')
ax3.set_title('Single Linkage')
ax4.set_title('Ward')
plt.show()


# Write your solution here :


Binary file not shown.
Binary file not shown.