@@ -2419,7 +2419,7 @@ M = xgboost(X = X, y = y, R = R, sml_type = 1, num_trees = 3, learning_rate = 0.
24192419| NAME | TYPE | DEFAULT | Description |
24202420| :------ | :------------- | -------- | :---------- |
24212421| X | Matrix[ Double] | --- | Feature matrix X; categorical features needs to be one-hot-encoded |
2422- | Y | Matrix[ Double] | --- | Label matrix Y |
2422+ | y | Matrix[ Double] | --- | Label matrix y |
24232423| R | Matrix[ Double] | --- | Matrix R; 1xn vector which for each feature in X contains the following information |
24242424| | | | - R[ ,2] : 1 (scalar feature) |
24252425| | | | - R[ ,1] : 2 (categorical feature) |
@@ -2448,7 +2448,7 @@ Y = matrix("1.0
24482448 7.0
24492449 8.0" , rows = 5 , cols = 1 )
24502450R = matrix (" 1.0 1.0 1.0 1.0 1.0" , rows = 1 , cols = 5 )
2451- M = xgboost(X = X , Y = Y , R = R )
2451+ M = xgboost(X = X , y = Y , R = R )
24522452```
24532453
24542454
@@ -2499,6 +2499,6 @@ Y = matrix("1.0
24992499 7.0
25002500 8.0" , rows = 5 , cols = 1 )
25012501R = matrix (" 1.0 1.0 1.0 1.0 1.0" , rows = 1 , cols = 5 )
2502- M = xgboost(X = X , Y = Y , R = R , num_trees = 10 , learning_rate = 0.4 )
2502+ M = xgboost(X = X , y = Y , R = R , num_trees = 10 , learning_rate = 0.4 )
25032503P = xgboostPredictRegression(X = X , M = M , learning_rate = 0.4 )
25042504```
0 commit comments