Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 8 additions & 7 deletions pkg/workloads/cortex/lib/type/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,20 +64,21 @@ def upload_class(self, class_name):
def metric_dimensions(self):
return [{"Name": "APIName", "Value": self.name}, {"Name": "APIID", "Value": self.id}]

def post_request_metrics(self, status_code, start_time, prediction_value=None):
metrics_list = []
metrics_list.append(self.status_code_metric(status_code))
def post_latency_metrics(self, status_code, start_time):
metrics = [self.status_code_metric(status_code), self.latency_metric(start_time)]
self.post_metrics(metrics)

def post_tracker_metrics(self, prediction_value=None):
if prediction_value is not None:
metrics_list.append(self.prediction_metrics(prediction_value))

metrics_list.append(self.latency_metric(start_time))
metrics = [self.prediction_metrics(prediction_value)]
self.post_metrics(metrics)

def post_metrics(self, metrics):
try:
if self.statsd is None:
raise CortexException("statsd client not initialized") # unexpected

for metric in metrics_list:
for metric in metrics:
tags = ["{}:{}".format(dim["Name"], dim["Value"]) for dim in metric["Dimensions"]]
if metric.get("Unit") == "Count":
self.statsd.increment(metric["MetricName"], value=metric["Value"], tags=tags)
Expand Down
4 changes: 3 additions & 1 deletion pkg/workloads/cortex/serve/serve.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,9 +120,11 @@ def after_request(response):
prediction = g.prediction

try:
api.post_latency_metrics(response.status_code, g.start_time)

if api.tracker is not None:
predicted_value = api.tracker.extract_predicted_value(prediction)
api.post_request_metrics(response.status_code, g.start_time, predicted_value)
api.post_tracker_metrics(predicted_value)
if predicted_value is not None and predicted_value not in local_cache["class_set"]:
api.upload_class(predicted_value)
local_cache["class_set"].add(predicted_value)
Expand Down