Skip to content

❗ This is a read-only mirror of the CRAN R package repository. SimplicialComplex — Topological Data Analysis: Simplicial Complex. Homepage: https://github.com/TDA-R/SimplicialComplex Report bugs for this package: https://github.com/TDA-R/SimplicialComplex/issues

License

Notifications You must be signed in to change notification settings

cran/SimplicialComplex

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Topological Data Analysis: Simplicial Complex

This package aims to provide a user-friendly TDA application. Although many TDA libraries, such as Dionysus, PHAT, and GUDHI, have been developed in Python and C++, I believe it would be valuable to implement simplicial complex functionality in R, making it compatible with the wide range of statistical methods available in R.

Goals

  1. This package will continue adding useful knowledge in the playground to help both me and the users understand the methods.
  2. Since this package computes simplicial complexes, more applications are expected in future versions.

Example code

# Get its' simplices by specific epsilon
points <- matrix(c(0, 1, 1, 0, 0, 0, 1, 1), ncol = 2)
epsilon <- 1.5
vr_complex <- VietorisRipsComplex(points, epsilon)

# You can find its' topology feature by using these functions
faces(vr_complex$simplices, target_dim=1)
boundary(vr_complex$simplices, 1)
betti_number(vr_complex$simplices, 1, tol=0.1)
euler_characteristic(simplices, tol=0.1)
abstract_simplicial_complex(simplices, 2)

# Plot the Vietoris-rips complex
plot(
  vr_complex$network,
  layout = points,
  vertex.label = 1:nrow(points),
  vertex.size = 12,
  edge.arrow.mode = 0,
  asp = 1
)

# Filtration, Boundary reduction, and Persistence informations
F <- build_vr_filtration(points, eps_max=1.2)
res <- boundary_info(F)
pairs <- extract_persistence_pairs(F, res$last_1, res$pivot_owner)
plot_persistence(pairs)

Playground
Try this playground to get familier with all of the concept that will be used in TDA.
App

Reference

  • Zomorodian, A., & Carlsson, G. (2004, June). Computing persistent homology. In Proceedings of the twentieth annual symposium on Computational geometry (pp. 347-356).
  • Chazal, F., & Michel, B. (2021). An introduction to topological data analysis: fundamental and practical aspects for data scientists. Frontiers in artificial intelligence, 4, 667963.

About

❗ This is a read-only mirror of the CRAN R package repository. SimplicialComplex — Topological Data Analysis: Simplicial Complex. Homepage: https://github.com/TDA-R/SimplicialComplex Report bugs for this package: https://github.com/TDA-R/SimplicialComplex/issues

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages