Skip to content

creativeautomaton/graphMERT-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 

Repository files navigation

graphMERT-python

A simple example test implementation of the princeton graphMERT paper.

https://arxiv.org/abs/2510.09580

All rights w/ authors: GraphMERT: Efficient and Scalable Distillation of Reliable Knowledge Graphs from Unstructured Data Margarita Belova, Jiaxin Xiao, Shikhar Tuli and Niraj K. Jha from Department of Electrical and Computer Engineering, Princeton University ArXiv link arXiv:2510.09580 from 10 October 2025

Based on the notebooks use of Romeo + Juliet text for the graphMERT model training.

GraphMERT Node Embeddings (t-SNE View)

import matplotlib.pyplot as plt from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, random_state=42) emb_2d = tsne.fit_transform(embeddings)

plt.figure(figsize=(8,8)) plt.scatter(emb_2d[:,0], emb_2d[:,1], c=labels, cmap='Spectral', alpha=0.7) for i, text in enumerate(corpus[:50]): # optional show partial labels plt.text(emb_2d[i,0]+0.01, emb_2d[i,1]+0.01, str(labels[i]), fontsize=6) plt.title("GraphMERT Node Embeddings (t-SNE View)") plt.show()

image

GraphMERT Semantic Graph Visualization

import networkx as nx

G = nx.Graph() for i, emb in enumerate(embeddings): G.add_node(i, text=corpus[i], cluster=int(labels[i]))

from scipy.spatial.distance import pdist, squareform dist = squareform(pdist(embeddings)) threshold = np.percentile(dist, 5) for i in range(len(embeddings)): for j in range(i+1, len(embeddings)): if dist[i,j] < threshold: G.add_edge(i, j)

plt.figure(figsize=(10,8)) pos = nx.spring_layout(G) nx.draw(G, pos, node_color=labels, cmap='Spectral', with_labels=False, node_size=40) plt.title("GraphMERT Semantic Graph Visualization") plt.show()

image

Query search on the graphs results

  • This is what we want bacause the search of the graph is linear based on chained knowledge with nodes having data of them.
image

About

A simple example test implementation of the princeton graphMERT paper.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published