|
| 1 | +import tensorflow as tf |
| 2 | +import numpy as np |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +import matplotlib.gridspec as gridspec |
| 5 | +import os |
| 6 | +from torch.autograd import Variable |
| 7 | +from tensorflow.examples.tutorials.mnist import input_data |
| 8 | + |
| 9 | + |
| 10 | +mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True) |
| 11 | +mb_size = 32 |
| 12 | +z_dim = 10 |
| 13 | +X_dim = mnist.train.images.shape[1] |
| 14 | +y_dim = mnist.train.labels.shape[1] |
| 15 | +h_dim = 128 |
| 16 | +c = 0 |
| 17 | +lr = 1e-3 |
| 18 | + |
| 19 | + |
| 20 | +def plot(samples): |
| 21 | + fig = plt.figure(figsize=(4, 4)) |
| 22 | + gs = gridspec.GridSpec(4, 4) |
| 23 | + gs.update(wspace=0.05, hspace=0.05) |
| 24 | + |
| 25 | + for i, sample in enumerate(samples): |
| 26 | + ax = plt.subplot(gs[i]) |
| 27 | + plt.axis('off') |
| 28 | + ax.set_xticklabels([]) |
| 29 | + ax.set_yticklabels([]) |
| 30 | + ax.set_aspect('equal') |
| 31 | + plt.imshow(sample.reshape(28, 28), cmap='Greys_r') |
| 32 | + |
| 33 | + return fig |
| 34 | + |
| 35 | + |
| 36 | +def xavier_init(size): |
| 37 | + in_dim = size[0] |
| 38 | + xavier_stddev = 1. / tf.sqrt(in_dim / 2.) |
| 39 | + return tf.random_normal(shape=size, stddev=xavier_stddev) |
| 40 | + |
| 41 | + |
| 42 | +""" Q(z|X) """ |
| 43 | +X = tf.placeholder(tf.float32, shape=[None, X_dim]) |
| 44 | +z = tf.placeholder(tf.float32, shape=[None, z_dim]) |
| 45 | + |
| 46 | +Q_W1 = tf.Variable(xavier_init([X_dim, h_dim])) |
| 47 | +Q_b1 = tf.Variable(tf.zeros(shape=[h_dim])) |
| 48 | + |
| 49 | +Q_W2 = tf.Variable(xavier_init([h_dim, z_dim])) |
| 50 | +Q_b2 = tf.Variable(tf.zeros(shape=[z_dim])) |
| 51 | + |
| 52 | +theta_Q = [Q_W1, Q_W2, Q_b1, Q_b2] |
| 53 | + |
| 54 | + |
| 55 | +def Q(X): |
| 56 | + h = tf.nn.relu(tf.matmul(X, Q_W1) + Q_b1) |
| 57 | + z = tf.matmul(h, Q_W2) + Q_b2 |
| 58 | + return z |
| 59 | + |
| 60 | + |
| 61 | +""" P(X|z) """ |
| 62 | +P_W1 = tf.Variable(xavier_init([z_dim, h_dim])) |
| 63 | +P_b1 = tf.Variable(tf.zeros(shape=[h_dim])) |
| 64 | + |
| 65 | +P_W2 = tf.Variable(xavier_init([h_dim, X_dim])) |
| 66 | +P_b2 = tf.Variable(tf.zeros(shape=[X_dim])) |
| 67 | + |
| 68 | +theta_P = [P_W1, P_W2, P_b1, P_b2] |
| 69 | + |
| 70 | + |
| 71 | +def P(z): |
| 72 | + h = tf.nn.relu(tf.matmul(z, P_W1) + P_b1) |
| 73 | + logits = tf.matmul(h, P_W2) + P_b2 |
| 74 | + prob = tf.nn.sigmoid(logits) |
| 75 | + return prob, logits |
| 76 | + |
| 77 | + |
| 78 | +""" D(z) """ |
| 79 | +D_W1 = tf.Variable(xavier_init([z_dim, h_dim])) |
| 80 | +D_b1 = tf.Variable(tf.zeros(shape=[h_dim])) |
| 81 | + |
| 82 | +D_W2 = tf.Variable(xavier_init([h_dim, 1])) |
| 83 | +D_b2 = tf.Variable(tf.zeros(shape=[1])) |
| 84 | + |
| 85 | +theta_D = [D_W1, D_W2, D_b1, D_b2] |
| 86 | + |
| 87 | + |
| 88 | +def D(z): |
| 89 | + h = tf.nn.relu(tf.matmul(z, D_W1) + D_b1) |
| 90 | + logits = tf.matmul(h, D_W2) + D_b2 |
| 91 | + prob = tf.nn.sigmoid(logits) |
| 92 | + return prob |
| 93 | + |
| 94 | + |
| 95 | +""" Training """ |
| 96 | +z_sample = Q(X) |
| 97 | +_, logits = P(z_sample) |
| 98 | + |
| 99 | +# Sample from random z |
| 100 | +X_samples, _ = P(z) |
| 101 | + |
| 102 | +# E[log P(X|z)] |
| 103 | +recon_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits, X)) |
| 104 | + |
| 105 | +# Adversarial loss to approx. Q(z|X) |
| 106 | +D_real = D(z) |
| 107 | +D_fake = D(z_sample) |
| 108 | + |
| 109 | +D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake)) |
| 110 | +G_loss = -tf.reduce_mean(tf.log(D_fake)) |
| 111 | + |
| 112 | +AE_solver = tf.train.AdamOptimizer().minimize(recon_loss, var_list=theta_P + theta_Q) |
| 113 | +D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D) |
| 114 | +G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_Q) |
| 115 | + |
| 116 | +sess = tf.Session() |
| 117 | +sess.run(tf.initialize_all_variables()) |
| 118 | + |
| 119 | +if not os.path.exists('out/'): |
| 120 | + os.makedirs('out/') |
| 121 | + |
| 122 | +i = 0 |
| 123 | + |
| 124 | +for it in range(1000000): |
| 125 | + X_mb, _ = mnist.train.next_batch(mb_size) |
| 126 | + z_mb = np.random.randn(mb_size, z_dim) |
| 127 | + |
| 128 | + _, recon_loss_curr = sess.run([AE_solver, recon_loss], feed_dict={X: X_mb}) |
| 129 | + _, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, z: z_mb}) |
| 130 | + _, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={X: X_mb}) |
| 131 | + |
| 132 | + if it % 1000 == 0: |
| 133 | + print('Iter: {}; D_loss: {:.4}; G_loss: {:.4}; Recon_loss: {:.4}' |
| 134 | + .format(it, D_loss_curr, G_loss_curr, recon_loss_curr)) |
| 135 | + |
| 136 | + samples = sess.run(X_samples, feed_dict={z: np.random.randn(16, z_dim)}) |
| 137 | + |
| 138 | + fig = plot(samples) |
| 139 | + plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight') |
| 140 | + i += 1 |
| 141 | + plt.close(fig) |
0 commit comments