Complete implementation of AI agents using LangChain, featuring multiple patterns, production-ready code, and comprehensive examples.
📖 Read the full tutorial: Building AI Agents from Scratch: A Complete Guide (2026)
- Python 3.9 or higher
- OpenAI API key (or Anthropic/Google)
- Basic understanding of Python and APIs
# Clone the repository
git clone https://github.com/DailyDevDotIn/AI-Agent-Tutorial.git
cd ai-agent-tutorial
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Set up environment variables
cp .env.example .env
# Edit .env and add your API keyspython examples/simple_agent.py- ✅ ReAct Pattern Agent - Reasoning + Acting
- ✅ Plan-and-Execute Agent - Strategic task decomposition
- ✅ Memory Systems - Short-term and long-term memory
- ✅ Custom Tools - Web search, code execution, calculations
- ✅ Error Handling - Robust retry logic and fallbacks
- ✅ Token Optimization - Cost tracking and optimization
- ✅ Caching - Response caching for common queries
- ✅ Security - Input validation and output sanitization
- ✅ API Server - FastAPI-based REST API
- ✅ Monitoring - LangSmith integration
- Research Assistant - Web search + summarization
- Code Reviewer - Automated code analysis
- Data Analyst - SQL queries + visualizations
- Customer Support - FAQ + ticket management
# Run all tests
pytest
# Run with coverage
pytest --cov=src tests/
# Run specific test file
pytest tests/test_agent.py -v# Build image
docker build -t ai-agent .
# Run container
docker run -p 8000:8000 --env-file .env ai-agent
# Or use docker-compose
docker-compose upBenchmarked on 1000 queries:
| Metric | Value |
|---|---|
| Success Rate | 98.5% |
| Avg Response Time | 3.2s |
| Avg Tokens/Query | 1,250 |
| Avg Cost/Query | $0.025 |
Contributions are welcome! Please read our Contributing Guide first.
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- LangChain for the amazing framework
- OpenAI for GPT models
- DailyDev.in community for feedback and testing
- 📧 Email: hello@dailydev.in
- 🐦 Twitter: @dailydevdotin
- 💼 LinkedIn: DailyDevDotIn
If you find this useful, please star the repo!
Built with ❤️ by the DailyDev.in team