A Model Context Protocol (MCP) server for Parallel Search API, built with ElysiaJS and deployed on Vercel.
- 🔍 Web search with natural language objectives
- 🚀 Fast deployment on Vercel serverless
- 🔐 User-provided API keys (no cost to server owner)
- 📊 Ranked, LLM-optimized results with citations
- ⚙️ Customizable processors (base/pro)
- 🌐 Built with ElysiaJS and TypeScript
- Fork this repository
- Connect to Vercel: https://vercel.com/new
- Deploy!
- Your MCP server will be available at:
https://your-project.vercel.app/mcp
# Install dependencies
bun install
# Run locally
bun run dev
# Test with MCP Inspector
npx @modelcontextprotocol/inspector@latest http://localhost:8000/mcpAdd to your .cursor/mcp.json:
{
"mcpServers": {
"parallel-search": {
"url": "https://your-deployment.vercel.app/mcp",
"headers": {
"x-api-key": "YOUR_PARALLEL_API_KEY"
}
}
}
}Note: Each user needs their own Parallel API key from https://parallel.ai
objective(optional): Natural language search goalsearch_queries(optional): List of specific queries (max 5)processor(optional): "base" (default) or "pro"max_results(optional): Limit number of resultsmax_chars_per_result(optional): Control excerpt length (100-30000)source_policy(optional): Include/exclude specific domainsapi_key(optional): Your Parallel API key (or set via headers)
In Cursor/Claude:
Search for "latest developments in quantum computing" using parallel_search
GET /health- Health check endpointPOST /mcp- MCP protocol endpoint
# Install dependencies
bun install
# Run development server
bun run dev
# Build for production
bun run buildMIT