Skip to content

data-mindset/mcp-echarts-docker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MCP ECharts build npm Version smithery badge npm License Trust Score

Generate Apache ECharts with AI MCP dynamically for chart generation and data analysis. Also you can use mcp-server-chart to generate chart, graph, map.

ECharts MCP server
mcp-echarts

✨ Features

  • Fully support all features and syntax of ECharts, include data, style, theme and so on.
  • Support exporting to png, svg, and option formats, with validation for ECharts to facilitate the model's multi-round output of correct syntax and graphics.
  • MinIO Integration, store charts in MinIO object storage and return URLs instead of Base64 data for better performance and sharing capabilities.
  • Lightweight, we can install it easily with zero dependence.
  • Extremely secure, fully generated locally, without relying on any remote services.

🤖 Usage

Desktop Applications (stdio transport)

To use with Desktop APP, such as Claude, VSCode, Cline, Cherry Studio, and so on, add the MCP server config below. On Mac system:

{
  "mcpServers": {
    "mcp-echarts": {
      "command": "npx",
      "args": [
        "-y",
        "mcp-echarts"
      ]
    }
  }
}

On Window system:

{
  "mcpServers": {
    "mcp-echarts": {
      "command": "cmd",
      "args": [
        "/c",
        "npx",
        "-y",
        "mcp-echarts"
      ]
    }
  }
}

Also, you can use it on modelscope, glama.ai, smithery.ai or others with HTTP, SSE Protocol.

🐳 Docker Deployment

Deploy to Render (Production Ready)

Deploy to Render

Deploy MCP ECharts with Docker to Render, including MinIO object storage for optimal performance:

# The render.yaml blueprint automatically deploys:
# 1. MCP ECharts web service with streamable transport
# 2. MinIO object storage for chart images
# 3. Auto-configured environment variables and connections

See DEPLOYMENT.md for detailed deployment instructions.

Local Docker Testing

Test locally using Docker Compose before deploying to production:

# Start all services (MCP ECharts + MinIO)
docker-compose up -d

# Test the health endpoint
curl http://localhost:3033/health

# Access MinIO console at http://localhost:9001
# Default credentials: minioadmin / minioadmin

# View logs
docker-compose logs -f mcp-echarts

# Stop services
docker-compose down

The local Docker setup includes:

  • MCP ECharts at http://localhost:3033/mcp (streamable transport)
  • MinIO at http://localhost:9000 (API) and http://localhost:9001 (Console)
  • Automatic bucket creation and permission setup

🚰 Run with SSE or Streamable transport

Install the package globally.

npm install -g mcp-echarts

Run the server with your preferred transport option:

# For SSE transport (default endpoint: /sse)
mcp-echarts -t sse

# For Streamable transport with custom endpoint
mcp-echarts -t streamable

Then you can access the server at:

  • SSE transport: http://localhost:3033/sse
  • Streamable transport: http://localhost:3033/mcp

🎮 CLI Options

You can also use the following CLI options when running the MCP server. Command options by run cli with -h.

MCP ECharts CLI

Options:
  --transport, -t  Specify the transport protocol: "stdio", "sse", or "streamable" (default: "stdio")
  --port, -p       Specify the port for SSE or streamable transport (default: 3033)
  --endpoint, -e   Specify the endpoint for the transport:
                    - For SSE: default is "/sse"
                    - For streamable: default is "/mcp"
  --help, -h       Show this help message

🗂️ MinIO Configuration (Optional)

For better performance and sharing capabilities, you can configure MinIO object storage to store chart images as URLs instead of Base64 data.

Note

If MinIO is not configured or unavailable, the system automatically falls back to Base64 data output, ensuring compatibility.

We can Integrate with MinIO object storage providers below.

Also, we can setup MinIO locally for free.

  1. Install and start MinIO locally:

    # Download MinIO (macOS example)
    brew install minio/stable/minio
    
    # Start MinIO server
    minio server ~/minio-data --console-address :9001
  2. Configure environment variables:

    # Copy the example environment file
    cp .env.example .env
    
    # Edit .env with your MinIO settings
    MINIO_ENDPOINT=localhost
    MINIO_PORT=9000
    MINIO_USE_SSL=false
    MINIO_ACCESS_KEY=minioadmin
    MINIO_SECRET_KEY=minioadmin
    MINIO_BUCKET_NAME=mcp-echarts

🔨 Development

Install dependencies:

npm install

Build the server:

npm run build

Start the MCP server:

npm run start

🧑🏻‍💻 Contributors

  • lyw405: Supports 15+ charting MCP tool. #2
  • 2niuhe: Support MCP with SSE and Streaming HTTP. #17
  • susuperli: Use MinIO to save the chart image base64 and return the url. #10
  • BQXBQX: Use @napi-rs/canvas instead node-canvas. #3
  • Meet-student: Add outputType schema for all chart tools. #24
  • hustcc: Initial the repo.

📄 License

MIT@hustcc.

About

Docker deployment of MCP ECharts for Render with MinIO integration

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 10