Databend AI Server extends any data warehouse with AI-ready UDFs, seamlessly fusing object storage, embeddings, and SQL pipelines.
list_stage_files(stage, limit)– enumerate objects from external stages.read_pdf(stage, path)– extract PDF text.read_docx(stage, path)– extract DOCX text.vector_embed_text_1024(model, text)– 1024-dim embeddings (batch-friendly).
uv sync
uv run databend-aiserver --port 8815CREATE CONNECTION my_s3_connection
STORAGE_TYPE = 's3'
ACCESS_KEY_ID = '<your-access-key-id>'
SECRET_ACCESS_KEY = '<your-secret-access-key>';
CREATE STAGE docs_stage
URL='s3://load/files/'
CONNECTION = (CONNECTION_NAME = 'my_s3_connection');
SELECT * FROM aiserver_list_stage_files(@docs_stage, 50);
SELECT aiserver_read_pdf(@docs_stage, 'reports/q1.pdf');
SELECT aiserver_read_docx(@docs_stage, 'reports/q1.docx');
SELECT aiserver_vector_embed_text_1024('qwen', doc_body) FROM docs_tbl;uv run pytest
uv run pytest -m "not slow"Built by the Databend team — engineers who redefine what's possible with data.