Skip to content

Databend AI Server extends data warehouse with AI-ready UDFs, seamlessly fusing object storage, embeddings, and SQL pipelines.

License

Notifications You must be signed in to change notification settings

databendlabs/databend-aiserver

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

databend-aiserver

Databend AI Server extends any data warehouse with AI-ready UDFs, seamlessly fusing object storage, embeddings, and SQL pipelines.

UDFs (prefix aiserver_)

  • list_stage_files(stage, limit) – enumerate objects from external stages.
  • read_pdf(stage, path) – extract PDF text.
  • read_docx(stage, path) – extract DOCX text.
  • vector_embed_text_1024(model, text) – 1024-dim embeddings (batch-friendly).

Quickstart

uv sync
uv run databend-aiserver --port 8815

Sample SQL

CREATE CONNECTION my_s3_connection
  STORAGE_TYPE = 's3'
  ACCESS_KEY_ID = '<your-access-key-id>'
  SECRET_ACCESS_KEY = '<your-secret-access-key>';

CREATE STAGE docs_stage
  URL='s3://load/files/'
  CONNECTION = (CONNECTION_NAME = 'my_s3_connection');

SELECT * FROM aiserver_list_stage_files(@docs_stage, 50);
SELECT aiserver_read_pdf(@docs_stage, 'reports/q1.pdf');
SELECT aiserver_read_docx(@docs_stage, 'reports/q1.docx');
SELECT aiserver_vector_embed_text_1024('qwen', doc_body) FROM docs_tbl;

Tests

uv run pytest
uv run pytest -m "not slow"

Built by the Databend team — engineers who redefine what's possible with data.

About

Databend AI Server extends data warehouse with AI-ready UDFs, seamlessly fusing object storage, embeddings, and SQL pipelines.

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages