Run the requirements.txt if you are in a new enviroment.
For Ubuntu with Anaconda:
$ pip install -r requirements
Install tensorflow for raspberry with:
$ wget -O tensorflow-1.11.0-cp35-cp35m-linux_armv7l.whl https://github.com/PINTO0309/Tensorflow-bin/raw/master/tensorflow-1.11.#0-cp35-cp35m-linux_armv7l_jemalloc.whl
$ pip3 install tensorflow-1.11.0-cp35-cp35m-linux_armv7l.whl
for raspberry pi3:
$ pip3 install -r requirements
Run the script:
$ python app.py
for start the server, the server will be available in http://localhost:5000/predict waiting for the POST requests.
Use the client.py
# import the necessary packages
import requests
# initialize the Keras REST API endpoint URL along with the input
# image path
KERAS_REST_API_URL = "http://localhost:5000/predict"
IMAGE_PATH = "car.jpg"
# load the input image and construct the payload for the request
image = open(IMAGE_PATH, "rb").read()
payload = {"image": image}
# submit the request
r = requests.post(KERAS_REST_API_URL, files=payload).json()
# ensure the request was successful
if r["success"]:
# loop over the predictions and display them
print(r)
# otherwise, the request failed
else:
print("Request failed")...or from the terminal with curl:
$ curl -X POST -F image=@car.jpg 'http://localhost:5000/predict'