|
| 1 | +def length_of_longest_substring(arr, k): |
| 2 | + """ |
| 3 | + Given an array containing 0s and 1s, if you are allowed to replace no more than 'k' |
| 4 | + 0s with 1s, find the length of the longest contiguous subarray having all 1s. |
| 5 | +
|
| 6 | + Example 1: |
| 7 | +
|
| 8 | + Input: Array=[0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1], k=2 |
| 9 | + Output: 6 |
| 10 | + Explanation: Replace the '0' at index 5 and 8 to have the longest contiguous subarray of 1s having length 6. |
| 11 | + Example 2: |
| 12 | +
|
| 13 | + Input: Array=[0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1], k=3 |
| 14 | + Output: 9 |
| 15 | + Explanation: Replace the '0' at index 6, 9, and 10 to have the longest contiguous subarray of 1s having length 9. |
| 16 | + """ |
| 17 | + |
| 18 | + # replace 0 with 1, up to k times |
| 19 | + # find the length of the substring with contiguous 1s |
| 20 | + # [0, 1, 0, 0, 1, 1, 0, 0, 0], k = 2. if we replace 0s at index 2 and 3, |
| 21 | + # length of the substring(1, 5) will be 5. |
| 22 | + |
| 23 | + # for each substring.. we can do k replacements. the replacement can |
| 24 | + # be anywhere.. we have to try all positions. in substring [0, 1, 0, 0, 0, 1] |
| 25 | + # we can replace [1, 1, 1, 0, 0, 1] or [0, 1, 1, 1, 0, 1] |
| 26 | + |
| 27 | + # brute forcing with each substring. |
| 28 | + # will be O(N^2) |
| 29 | + |
| 30 | + len_of_longest_ones = 0 |
| 31 | + |
| 32 | + N = len(arr) |
| 33 | + for i in range(N): |
| 34 | + replacements = 0 |
| 35 | + for j in range(i, N): |
| 36 | + if arr[j] == 0 and replacements >= k: |
| 37 | + # quit this substring if we crossed the replacement limit |
| 38 | + break |
| 39 | + |
| 40 | + # XXX This is flawed. the replacement can be done further |
| 41 | + # down the substring too. this solution would fail. |
| 42 | + if arr[j] == 0: |
| 43 | + replacements += 1 |
| 44 | + |
| 45 | + len_of_longest_ones = max(len_of_longest_ones, j - i + 1) |
| 46 | + |
| 47 | + return len_of_longest_ones |
| 48 | + |
| 49 | +def length_of_longest_substring_v1(arr, k): |
| 50 | + # using a sliding window method? |
| 51 | + # window tracks the start and end of substring with 1s |
| 52 | + # extend the window if arr[i] == 1 or arr[i] == 0 and replacements < k |
| 53 | + |
| 54 | + # some corner cases, arr with all ones or 0s. |
| 55 | + |
| 56 | + N = len(arr) |
| 57 | + window_start = 0 |
| 58 | + len_of_longest_ones = 0 |
| 59 | + num_ones_in_substr = 0 |
| 60 | + |
| 61 | + for window_end in range(N): |
| 62 | + if arr[window_end] == 1: |
| 63 | + # extend the window without replacement |
| 64 | + num_ones_in_substr += 1 |
| 65 | + |
| 66 | + window_length = window_end - window_start + 1 |
| 67 | + if (window_length - num_ones_in_substr) > k: |
| 68 | + # we've exceeded the replacements. time to shrink the window |
| 69 | + if arr[window_start] == 1: |
| 70 | + num_ones_in_substr -= 1 |
| 71 | + window_start += 1 |
| 72 | + window_length = window_end - window_start + 1 |
| 73 | + |
| 74 | + len_of_longest_ones = max(len_of_longest_ones, window_length) |
| 75 | + |
| 76 | + return len_of_longest_ones |
| 77 | + |
| 78 | +def test_length_of_longest_substring(): |
| 79 | + testcases = [ |
| 80 | + [ |
| 81 | + [[0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1], 2], 6 |
| 82 | + ], |
| 83 | + [ |
| 84 | + [[0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1], 3], 9 |
| 85 | + ], |
| 86 | + [ |
| 87 | + [[0, 1, 1, 0, 0], 2], 4 |
| 88 | + ], |
| 89 | + [ |
| 90 | + [[0, 0, 0, 0, 0], 3], 3 |
| 91 | + ], |
| 92 | + [ |
| 93 | + [[0, 0, 0, 0, 0], 0], 0 |
| 94 | + ], |
| 95 | + [ |
| 96 | + [[1, 1, 1, 1, 1], 3], 5 |
| 97 | + ] |
| 98 | + ] |
| 99 | + |
| 100 | + for testcase in testcases: |
| 101 | + arr, k = testcase[0] |
| 102 | + expected_output = testcase[1] |
| 103 | + |
| 104 | + actual_output = length_of_longest_substring_v1(arr, k) |
| 105 | + assert expected_output == actual_output, f'actual: {actual_output}, expected: {expected_output}, inp: arr={arr}, k={k}' |
| 106 | + |
| 107 | +test_length_of_longest_substring() |
0 commit comments