Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
235 changes: 235 additions & 0 deletions Tensorflow_Handwritten_Digit_Reader.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train on 60000 samples\n",
"Epoch 1/5\n",
"60000/60000 [==============================] - 8s 131us/sample - loss: 0.2623 - accuracy: 0.9238\n",
"Epoch 2/5\n",
"60000/60000 [==============================] - 7s 120us/sample - loss: 0.1086 - accuracy: 0.9663\n",
"Epoch 3/5\n",
"60000/60000 [==============================] - 7s 122us/sample - loss: 0.0722 - accuracy: 0.9775\n",
"Epoch 4/5\n",
"60000/60000 [==============================] - 7s 121us/sample - loss: 0.0527 - accuracy: 0.9833\n",
"Epoch 5/5\n",
"60000/60000 [==============================] - 7s 120us/sample - loss: 0.0402 - accuracy: 0.9871\n"
]
},
{
"data": {
"text/plain": [
"<tensorflow.python.keras.callbacks.History at 0x1ad88ab50c8>"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import tensorflow as tf\n",
"\n",
"mnist = tf.keras.datasets.mnist #28x28 images of hand written images 0-9\n",
"\n",
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
"\n",
"x_train = tf.keras.utils.normalize(x_train, axis=1)\n",
"x_test = tf.keras.utils.normalize(x_test, axis=1)\n",
"\n",
"model = tf.keras.models.Sequential()\n",
"model.add(tf.keras.layers.Flatten())\n",
"model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))\n",
"model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))\n",
"model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax))\n",
"\n",
"model.compile(optimizer='adam',\n",
" loss='sparse_categorical_crossentropy',\n",
" metrics=['accuracy']\n",
" )\n",
"model.fit(x_train, y_train, epochs = 5)\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10000/10000 [==============================] - 1s 80us/sample - loss: 0.0868 - accuracy: 0.9755\n",
"0.0868174561039661 0.9755\n"
]
}
],
"source": [
"val_loss, val_acc = model.evaluate(x_test, y_test)\n",
"print(val_loss, val_acc)\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAOPElEQVR4nO3db4hV953H8c9XnTHJWKLG0fpn4rgSSCRhtblMRJfi0qQkPojpgy6VUFwIawMJVOiDDemD+jAs25ZCShO7kdrQjRTaECGy20QK0gcx3gQTzZpVoxOdOjgjmj/+IU302wdzLBOd+zvjPefec+v3/YLh3jnfe+75cvUz5977O+f8zN0F4MY3peoGALQHYQeCIOxAEIQdCIKwA0FMa+fG5syZ4/39/e3cJBDK4OCgTp8+bRPVCoXdzB6U9DNJUyX9l7s/k3p8f3+/6vV6kU0CSKjVag1rTb+NN7Opkn4u6SFJyyStN7NlzT4fgNYq8pl9QNIRdz/q7n+RtF3SunLaAlC2ImFfKOnEuN+HsmVfYmYbzaxuZvXR0dECmwNQRJGwT/QlwDXH3rr7FnevuXutt7e3wOYAFFEk7EOS+sb9vkjSyWLtAGiVImHfK+kOM1tiZt2SviNpRzltAShb00Nv7v6FmT0p6X81NvS21d3fK60zAKUqNM7u7jsl7SypFwAtxOGyQBCEHQiCsANBEHYgCMIOBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IgrADQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBCEHQiCsANBEHYgCMIOBFFoFld0PndP1j///PNC6+c5ePBg0+t++OGHyfqaNWuS9c2bNzes7dmzJ7nu2bNnk/XBwcFk/eLFi8l6FQqF3cwGJX0q6ZKkL9y9VkZTAMpXxp79n939dAnPA6CF+MwOBFE07C7pD2b2lpltnOgBZrbRzOpmVh8dHS24OQDNKhr21e7+NUkPSXrCzL5+9QPcfYu719y91tvbW3BzAJpVKOzufjK7HZH0sqSBMpoCUL6mw25mPWb2lSv3JX1T0oGyGgNQriLfxs+T9LKZXXme/3b3/ymlqxvMxx9/nKxfunQpWT958mSyfubMmYa17N+noRMnTiTr58+fT9bzdHV1Nax1d3cX2vb27duT9VdffbVhbfHixcl1+/r6kvVHH300We9ETYfd3Y9K+scSewHQQgy9AUEQdiAIwg4EQdiBIAg7EASnuJbg2LFjyfqLL75Y6PmnT5+erM+cObNhraenJ7nulCnV/b3PGxZcvXp1sv7ZZ58l688++2zD2oIFC5Lr5r1uS5YsSdY7EXt2IAjCDgRB2IEgCDsQBGEHgiDsQBCEHQiCcfYS5F2B55ZbbknWL1y4UGY7pZo7d26ynneaaupSZNOmpf/7LVu2LFnH9WHPDgRB2IEgCDsQBGEHgiDsQBCEHQiCsANBMM5eghkzZiTra9euTdaPHDmSrC9atChZ37t3b7KeMmvWrGT9gQceSNbzxso/+uijhrVDhw4l10W52LMDQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBCMs7dB3nnZS5cuTdbzrht/7ty5hrXjx48n173rrruS9bxx9Dypa9oPDAwUem5cn9w9u5ltNbMRMzswbtlsM3vNzA5nt+kjMwBUbjJv438l6cGrlj0laZe73yFpV/Y7gA6WG3Z33y3pzFWL10nalt3fJumRkvsCULJmv6Cb5+7DkpTdNrxQmZltNLO6mdVT1yMD0Fot/zbe3be4e83da3kXZgTQOs2G/ZSZzZek7HakvJYAtEKzYd8haUN2f4OkV8ppB0Cr5A6imtlLktZImmNmQ5J+JOkZSb81s8ckHZf07VY2eaPLG0fPk3ft9pS8c+n7+/ubfm50ltywu/v6BqVvlNwLgBbicFkgCMIOBEHYgSAIOxAEYQeC4BTXG0CtVmtYS53+KkkjI+njoYaGhpL1vMtco3OwZweCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIBhnvwGkLve8cuXK5Lo7d+5M1nfv3p2sL1iwIFmfN29ew1reZaxRLvbsQBCEHQiCsANBEHYgCMIOBEHYgSAIOxAE4+w3uBkzZiTrq1atStZff/31ZP3w4cPJ+uDgYMOauyfXXbx4cbLe09OTrOPL2LMDQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBCMsweXd933hx9+OFl/4403kvXUden37duXXHd4eDhZv/fee5P1mTNnJuvR5O7ZzWyrmY2Y2YFxyzab2Z/NbF/2s7a1bQIoajJv438l6cEJlv/U3ZdnP+nLnQCoXG7Y3X23pDNt6AVACxX5gu5JM3s3e5s/q9GDzGyjmdXNrD46OlpgcwCKaDbsv5C0VNJyScOSftzoge6+xd1r7l7r7e1tcnMAimoq7O5+yt0vuftlSb+UNFBuWwDK1lTYzWz+uF+/JelAo8cC6Ay54+xm9pKkNZLmmNmQpB9JWmNmyyW5pEFJ32thj6jQ7Nmzk/X7778/WT9x4kTD2ptvvplc95133knW9+/fn6xv2rQpWY8mN+zuvn6CxS+0oBcALcThskAQhB0IgrADQRB2IAjCDgTBKa4opLu7O1lfunRpw9revXsLbfvQoUPJ+p49exrW7rvvvkLb/nvEnh0IgrADQRB2IAjCDgRB2IEgCDsQBGEHgmCcHUlnzqQvP3j06NFk/ezZsw1rly9fbqqnKxYsWJCsDwxwTZXx2LMDQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBCMs9/gPvnkk2Q975zw999/P1m/ePFist7V1dWwlncu/JQp6X3RrbfemqybWbIeDXt2IAjCDgRB2IEgCDsQBGEHgiDsQBCEHQiCcfa/A+fPn0/WP/jgg4a1Y8eOFXruvHH0Im677bZkPe/a7qlr0uNauXt2M+szsz+a2UEze8/Mvp8tn21mr5nZ4ex2VuvbBdCsybyN/0LSD9z9LkkrJT1hZsskPSVpl7vfIWlX9juADpUbdncfdve3s/ufSjooaaGkdZK2ZQ/bJumRVjUJoLjr+oLOzPolrZC0R9I8dx+Wxv4gSJrbYJ2NZlY3s/ro6GixbgE0bdJhN7MZkn4naZO7p8+uGMfdt7h7zd1rvb29zfQIoASTCruZdWks6L9x999ni0+Z2fysPl/SSGtaBFCG3KE3GztP8AVJB939J+NKOyRtkPRMdvtKSzq8AZw7dy5Zz/t4s2vXrmT90qVLDWs9PT3JdfNOI80zd+6En97+ZsWKFQ1rt99+e6Ft4/pMZpx9taTvStpvZvuyZU9rLOS/NbPHJB2X9O3WtAigDLlhd/c/SWp0FYBvlNsOgFbhcFkgCMIOBEHYgSAIOxAEYQeC4BTXSUpdkvm5555Lrps3ln3hwoVkffr06cn6zJkzk/WUvKMaV61alaz39fUl61OnTr3untAa7NmBIAg7EARhB4Ig7EAQhB0IgrADQRB2IIgw4+zPP/98sl6v15P1oaGhhrWbb745ue6dd96ZrN90003Jep5p0xr/M959993Jde+5555knXHyGwd7diAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IIsw4++OPP56sL1y4MFlPXR+9v7+/6XWl/LHurq6uZH3lypUNa93d3cl1EQd7diAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IYjLzs/dJ+rWkr0q6LGmLu//MzDZL+jdJVyYXf9rdd7aq0aLcveoWgEpN5qCaLyT9wN3fNrOvSHrLzF7Laj919/9sXXsAyjKZ+dmHJQ1n9z81s4OS0oebAeg41/WZ3cz6Ja2QtCdb9KSZvWtmW81sVoN1NppZ3czqo6OjEz0EQBtMOuxmNkPS7yRtcvdPJP1C0lJJyzW25//xROu5+xZ3r7l7LW9eMQCtM6mwm1mXxoL+G3f/vSS5+yl3v+TulyX9UtJA69oEUFRu2M3MJL0g6aC7/2Tc8vnjHvYtSQfKbw9AWSbzbfxqSd+VtN/M9mXLnpa03syWS3JJg5K+15IOAZRiMt/G/0mSTVDq2DF1ANfiCDogCMIOBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIAg7EARhB4Ig7EAQ1s5LLJvZqKQPxy2aI+l02xq4Pp3aW6f2JdFbs8rsbbG7T3j9t7aG/ZqNm9XdvVZZAwmd2lun9iXRW7Pa1Rtv44EgCDsQRNVh31Lx9lM6tbdO7Uuit2a1pbdKP7MDaJ+q9+wA2oSwA0FUEnYze9DM/t/MjpjZU1X00IiZDZrZfjPbZ2b1invZamYjZnZg3LLZZvaamR3ObiecY6+i3jab2Z+z126fma2tqLc+M/ujmR00s/fM7PvZ8kpfu0RfbXnd2v6Z3cymSjok6QFJQ5L2Slrv7v/X1kYaMLNBSTV3r/wADDP7uqRzkn7t7ndny/5D0hl3fyb7QznL3f+9Q3rbLOlc1dN4Z7MVzR8/zbikRyT9qyp87RJ9/Yva8LpVsWcfkHTE3Y+6+18kbZe0roI+Op6775Z05qrF6yRty+5v09h/lrZr0FtHcPdhd387u/+ppCvTjFf62iX6aosqwr5Q0olxvw+ps+Z7d0l/MLO3zGxj1c1MYJ67D0tj/3kkza24n6vlTuPdTldNM94xr10z058XVUXYJ5pKqpPG/1a7+9ckPSTpieztKiZnUtN4t8sE04x3hGanPy+qirAPSeob9/siSScr6GNC7n4yux2R9LI6byrqU1dm0M1uRyru5286aRrviaYZVwe8dlVOf15F2PdKusPMlphZt6TvSNpRQR/XMLOe7IsTmVmPpG+q86ai3iFpQ3Z/g6RXKuzlSzplGu9G04yr4teu8unP3b3tP5LWauwb+Q8k/bCKHhr09Q+S3sl+3qu6N0kvaext3ecae0f0mKTbJO2SdDi7nd1Bvb0oab+kdzUWrPkV9fZPGvto+K6kfdnP2qpfu0RfbXndOFwWCIIj6IAgCDsQBGEHgiDsQBCEHQiCsANBEHYgiL8CObYutWTbTN8AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.imshow(x_train[0], cmap = plt.cm.binary)\n",
"plt.show()\n",
"\n",
"#print(x_train[0])"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:From C:\\Users\\M QASIM\\Anaconda3\\envs\\tensorenv\\lib\\site-packages\\tensorflow_core\\python\\ops\\resource_variable_ops.py:1786: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"If using Keras pass *_constraint arguments to layers.\n",
"INFO:tensorflow:Assets written to: epicNumReader.model\\assets\n"
]
}
],
"source": [
"model.save('epicNumReader.model')"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"new_model = tf.keras.models.load_model('epicNumReader.model')\n"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"predictions = new_model.predict(x_test)\n"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[2.9749966e-11 1.5573759e-09 1.4861869e-06 ... 9.9999845e-01\n",
" 2.8309510e-09 1.4818610e-09]\n",
" [4.1910638e-14 4.5076781e-06 9.9999547e-01 ... 1.4482120e-12\n",
" 4.4190056e-09 9.9420687e-15]\n",
" [1.7135477e-08 9.9995577e-01 2.2569866e-05 ... 3.5316289e-06\n",
" 1.1573670e-05 2.6440327e-07]\n",
" ...\n",
" [3.8316742e-11 3.0548819e-08 3.8839926e-10 ... 1.8519009e-06\n",
" 3.3297312e-07 1.3001729e-05]\n",
" [9.1106722e-10 1.0552093e-08 1.7957068e-09 ... 1.6109321e-10\n",
" 2.6345744e-05 9.1843123e-11]\n",
" [1.9051569e-09 2.3680266e-10 4.8858440e-10 ... 9.4841717e-14\n",
" 1.9254867e-09 2.9086459e-11]]\n"
]
}
],
"source": [
"print(predictions)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAOIUlEQVR4nO3dX4xc9XnG8efxencNxgY7gHHATYA6aShtnHZjl1JVRKgpoEoGKWnwBaUSknMRVCLloihVFS5R1CSqqgrJKVbcKiVKlSCohNIgC9VCRRYLcrCNSyFgYPGWDTbExjb79+3FHqrF7PxmmTnzx36/H2k1s+edM+f1eJ85M/Obc36OCAE49y3rdQMAuoOwA0kQdiAJwg4kQdiBJJZ3c2NDHo4VWtnNTQKpvKeTmopJL1ZrK+y2b5L095IGJP1TRNxfuv0KrdQW39jOJgEU7I3dDWstv4y3PSDpHyXdLOkaSdtsX9Pq/QHorHbes2+W9FJEvBwRU5J+JGlrPW0BqFs7Yb9c0usLfh+rln2A7e22R22PTmuyjc0BaEc7YV/sQ4APffc2InZExEhEjAxquI3NAWhHO2Efk7Rhwe9XSDrSXjsAOqWdsD8taaPtK20PSbpd0qP1tAWgbi0PvUXEjO27Jf2H5ofedkbEwdo6A1CrtsbZI+IxSY/V1AuADuLrskAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJNHVU0mjNR65tlifG27833h6XfnsQMc3DBTry2aLZa09VD7V2NDR0w1rc/ueL985asWeHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSYJy9D5zeurlYP3lZeSx8dmjRGXolSdHkf9hNxtE/PMfPB739qaHy/c81rl929IriujOvj5U3jo+EPTuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJME4exe8c8d1xfrkmsbj5JI0MNlksLtg6NfldVe/OlWsT19QHuN/9+Pl+tTqxv+28T/bUFz3kgcYZ69TW2G3fVjSCUmzkmYiYqSOpgDUr449+xci4q0a7gdAB/GeHUii3bCHpJ/bfsb29sVuYHu77VHbo9Mqn68MQOe0+zL++og4YvtSSY/b/u+I2LPwBhGxQ9IOSVrtta1/0gSgLW3t2SPiSHU5IelhSeXDtwD0TMtht73S9qr3r0v6oqQDdTUGoF7tvIxfJ+lh2+/fz79GxM9q6eos89q//U6xHs+Xx9FXHC3f/3CTsfKLftb4/OtzJxuft12SYro8zr58WXkcfforny/XL2j8b59eVX5cUK+Wwx4RL0v6bI29AOgght6AJAg7kARhB5Ig7EAShB1IgkNca7BrZGex/hfP31OsD79THlq78N/3F+uzJ08W6+2ILeXpoicvbH347LKnysOCqBd7diAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgnH2GvztleXDPK+6+IViPd4tj5PPvffeR+6pLsevOq98A45SPWuwZweSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJBhn74LZt5qcK7qH4rryCYJLUy4vxXkTjY/VX/5M+fsHc21tGWdizw4kQdiBJAg7kARhB5Ig7EAShB1IgrADSTDOfo4b+PRvFuvjv7+yfAflU9pr+enyDS7Zc6RhbebUqfKdo1ZN9+y2d9qesH1gwbK1th+3/WJ1uaazbQJo11Jexv9A0k1nLLtX0u6I2Chpd/U7gD7WNOwRsUfSsTMWb5W0q7q+S9KtNfcFoGatfkC3LiLGJam6vLTRDW1vtz1qe3Raky1uDkC7Ov5pfETsiIiRiBgZ1HCnNweggVbD/qbt9ZJUXU7U1xKATmg17I9KurO6fqekR+ppB0CnNB1nt/2QpBskXWx7TNK3JN0v6ce275L0mqQvd7JJtG76slXFejR5uvdsuX7hK+XPYWZeebV8B+iapmGPiG0NSjfW3AuADuLrskAShB1IgrADSRB2IAnCDiTBIa7ngFO3bWlYO7FhoK37vuiX08X68icPFOtNjpBFF7FnB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkGGc/CyxbWT7d86lLGj9nR5Nh9uWnyiPh5+19qVifnZ4qbwB9gz07kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBOPtZ4MTN1xbrs8Nu+b4veqk8Tj779tst3zf6C3t2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCcfY+MPCpq4v199a0/px8/v/OFeuDe/YX65z3/dzR9K/I9k7bE7YPLFh2n+03bO+rfm7pbJsA2rWUXcYPJN20yPLvRcSm6uexetsCULemYY+IPZKOdaEXAB3Uzgd0d9t+rnqZv6bRjWxvtz1qe3Rak21sDkA7Wg37A5KulrRJ0rik7zS6YUTsiIiRiBgZ1HCLmwPQrpbCHhFvRsRsRMxJ+r6kzfW2BaBuLYXd9voFv94mqTxvL4CeazrObvshSTdIutj2mKRvSbrB9ibND8MelvTVDvZ41mt23vdjn7+kWI82Plk571fl+dWD876n0TTsEbFtkcUPdqAXAB3E12WBJAg7kARhB5Ig7EAShB1IgkNcu+DUF367WH/vY+Xn3IHJ8oGmq1+faVgb+k8OYcU89uxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kATj7F0wMVJ+mIfbPMPfyt2HGtbmOIQVFfbsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AE4+znAK9Y0bC2bHa2i5182Nzp042LUT6a3oNDxfqyC1eVN+7CvmzthcVVX/nKpcX69OryVNhz5zU5U0Dhv+Uz3x4rrjoz9kb5vhtgzw4kQdiBJAg7kARhB5Ig7EAShB1IgrADSTDOfg44cvvGhrVo8j/sJsPwTetz5fHk8ycaj0e/s3GguO7JjeVj8bf81svF+mUr3m5YG/RbxXXPP/lOsf6Ha8rb/vSKI8X6QOGM/Td9abK47p9+fFOx3kjTPbvtDbafsH3I9kHb91TL19p+3PaL1eWaljoA0BVLeRk/I+kbEfEZSX8g6Wu2r5F0r6TdEbFR0u7qdwB9qmnYI2I8Ip6trp+QdEjS5ZK2StpV3WyXpFs71SSA9n2kD+hsf1LS5yTtlbQuIsal+ScESYt+mdj2dtujtkenVX4vAqBzlhx22xdI+omkr0fE8aWuFxE7ImIkIkYGNdxKjwBqsKSw2x7UfNB/GBE/rRa/aXt9VV8vaaIzLQKoQ9OhN9uW9KCkQxHx3QWlRyXdKen+6vKRjnR4Dlh1uDw8NbXaXeqk+359VePhtatuLg9ffWndaLH+2NHfLdan5hr/eU81+dM/NVM+vPYf/uvGYv38VwaL9ZK/WlX+e7lST7V0v0sZZ79e0h2S9tveVy37puZD/mPbd0l6TdKXW+oAQFc0DXtEPCmp0a6n/PQGoG/wdVkgCcIOJEHYgSQIO5AEYQeScDQ5nW+dVnttbDEf4J8prvtsse7Z8mmLY7DxWHY0GcKfWlMeTz7+G+UBm2aHuE5f0LiBmZXFVbWsyWzTQ02+x7n+iaMNa7MHXyivfJbaG7t1PI4t+qCzZweSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJDiVdB/wU79ob/0Wa5LUeLLnpdX7WW8nq+4/7NmBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgiaZht73B9hO2D9k+aPueavl9tt+wva/6uaXz7QJo1VJOXjEj6RsR8aztVZKesf14VfteRPxd59oDUJelzM8+Lmm8un7C9iFJl3e6MQD1+kjv2W1/UtLnJO2tFt1t+znbO22vabDOdtujtkenNdlWswBat+Sw275A0k8kfT0ijkt6QNLVkjZpfs//ncXWi4gdETESESODGq6hZQCtWFLYbQ9qPug/jIifSlJEvBkRsxExJ+n7kjZ3rk0A7VrKp/GW9KCkQxHx3QXL1y+42W2SDtTfHoC6LOXT+Osl3SFpv+191bJvStpme5OkkHRY0lc70iGAWizl0/gntfjpxx+rvx0AncI36IAkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0k4Irq3MftXkl5dsOhiSW91rYGPpl9769e+JHprVZ29fSIiLlms0NWwf2jj9mhEjPSsgYJ+7a1f+5LorVXd6o2X8UAShB1Iotdh39Hj7Zf0a2/92pdEb63qSm89fc8OoHt6vWcH0CWEHUiiJ2G3fZPtF2y/ZPveXvTQiO3DtvdX01CP9riXnbYnbB9YsGyt7cdtv1hdLjrHXo9664tpvAvTjPf0sev19Oddf89ue0DS/0j6E0ljkp6WtC0inu9qIw3YPixpJCJ6/gUM238s6V1J/xwR11bLvi3pWETcXz1RromIv+6T3u6T9G6vp/GuZitav3CacUm3SvpL9fCxK/T15+rC49aLPftmSS9FxMsRMSXpR5K29qCPvhcReyQdO2PxVkm7quu7NP/H0nUNeusLETEeEc9W109Ien+a8Z4+doW+uqIXYb9c0usLfh9Tf833HpJ+bvsZ29t73cwi1kXEuDT/xyPp0h73c6am03h30xnTjPfNY9fK9Oft6kXYF5tKqp/G/66PiN+TdLOkr1UvV7E0S5rGu1sWmWa8L7Q6/Xm7ehH2MUkbFvx+haQjPehjURFxpLqckPSw+m8q6jffn0G3upzocT//r5+m8V5smnH1wWPXy+nPexH2pyVttH2l7SFJt0t6tAd9fIjtldUHJ7K9UtIX1X9TUT8q6c7q+p2SHulhLx/QL9N4N5pmXD1+7Ho+/XlEdP1H0i2a/0T+l5L+phc9NOjrKkm/qH4O9ro3SQ9p/mXdtOZfEd0l6WOSdkt6sbpc20e9/Yuk/ZKe03yw1veotz/S/FvD5yTtq35u6fVjV+irK48bX5cFkuAbdEAShB1IgrADSRB2IAnCDiRB2IEkCDuQxP8BguwyeA+T5x8AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.imshow(x_test[1])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2\n"
]
}
],
"source": [
"import numpy as np\n",
"print(np.argmax(predictions[1]))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}