|
1 | 1 | package com.fishercoder.solutions; |
2 | 2 |
|
3 | | -/** |
4 | | - * 498. Diagonal Traverse |
5 | | - * |
6 | | - * Given a matrix of m x N elements (m rows, N columns), return all elements of the matrix in diagonal order |
7 | | - * as shown in the below image. |
8 | | -
|
9 | | - Example: |
10 | | -
|
11 | | - Input: |
12 | | - [ |
13 | | - [ 1, 2, 3 ], |
14 | | - [ 4, 5, 6 ], |
15 | | - [ 7, 8, 9 ] |
16 | | - ] |
17 | | - Output: [1,2,4,7,5,3,6,8,9] |
18 | | -
|
19 | | - Note: |
20 | | -
|
21 | | - The total number of elements of the given matrix will not exceed 10,000. |
22 | | -
|
23 | | - */ |
24 | 3 | public class _498 { |
25 | 4 |
|
26 | | -public static class Solutoin1 { |
27 | | - /** |
28 | | - * Reference: https://discuss.leetcode.com/topic/77865/concise-java-solution/2 |
29 | | - * Just keep walking the matrix, when hitting the four borders (top, bottom, left or right), |
30 | | - * just directions and keep walking. |
31 | | - */ |
32 | | - public int[] findDiagonalOrder(int[][] matrix) { |
| 5 | + public static class Solutoin1 { |
| 6 | + /** |
| 7 | + * Reference: https://discuss.leetcode.com/topic/77865/concise-java-solution/2 |
| 8 | + * Just keep walking the matrix, when hitting the four borders (top, bottom, left or right), |
| 9 | + * just directions and keep walking. |
| 10 | + */ |
| 11 | + public int[] findDiagonalOrder(int[][] matrix) { |
33 | 12 |
|
34 | | - if (matrix == null || matrix.length == 0) { |
35 | | - return new int[0]; |
36 | | - } |
37 | | - int m = matrix.length; |
38 | | - int n = matrix[0].length; |
39 | | - int[] result = new int[m * n]; |
40 | | - int d = 1; |
41 | | - int i = 0; |
42 | | - int j = 0; |
43 | | - for (int k = 0; k < m * n; ) { |
44 | | - result[k++] = matrix[i][j]; |
45 | | - i -= d; |
46 | | - j += d; |
47 | | - |
48 | | - if (i >= m) { |
49 | | - i = m - 1; |
50 | | - j += 2; |
51 | | - d = -d; |
52 | | - } |
53 | | - if (j >= n) { |
54 | | - j = n - 1; |
55 | | - i += 2; |
56 | | - d = -d; |
| 13 | + if (matrix == null || matrix.length == 0) { |
| 14 | + return new int[0]; |
57 | 15 | } |
58 | | - if (i < 0) { |
59 | | - i = 0; |
60 | | - d = -d; |
61 | | - } |
62 | | - if (j < 0) { |
63 | | - j = 0; |
64 | | - d = -d; |
| 16 | + int m = matrix.length; |
| 17 | + int n = matrix[0].length; |
| 18 | + int[] result = new int[m * n]; |
| 19 | + int d = 1; |
| 20 | + int i = 0; |
| 21 | + int j = 0; |
| 22 | + for (int k = 0; k < m * n; ) { |
| 23 | + result[k++] = matrix[i][j]; |
| 24 | + i -= d; |
| 25 | + j += d; |
| 26 | + |
| 27 | + if (i >= m) { |
| 28 | + i = m - 1; |
| 29 | + j += 2; |
| 30 | + d = -d; |
| 31 | + } |
| 32 | + if (j >= n) { |
| 33 | + j = n - 1; |
| 34 | + i += 2; |
| 35 | + d = -d; |
| 36 | + } |
| 37 | + if (i < 0) { |
| 38 | + i = 0; |
| 39 | + d = -d; |
| 40 | + } |
| 41 | + if (j < 0) { |
| 42 | + j = 0; |
| 43 | + d = -d; |
| 44 | + } |
65 | 45 | } |
| 46 | + return result; |
66 | 47 | } |
67 | | - return result; |
68 | 48 | } |
69 | | -} |
70 | 49 |
|
71 | 50 | } |
0 commit comments