The Structured Data Layer for AI Agents
Transform any unstructured input into agent-ready JSON with 95% accuracy. Built for Google ADK, MCP, LangChain, and any agent framework using our revolutionary two-stage Architect-Extractor pattern.
# Install globally
npm install -g parserator
# Parse any text instantly
parserator parse "Contact: John Doe, Email: john@example.com, Phone: 555-0123"Output:
{
"contact": "John Doe",
"email": "john@example.com",
"phone": "555-0123"
}# Get your free API key
curl -X POST https://parserator.com/api/keys/generate \
-H "Content-Type: application/json" \
-d '{"email": "your@email.com"}'@agent.tool
def extract_user_intent(user_message: str) -> UserIntent:
return parse_for_agent(
text=user_message,
schema=UserIntent,
context="command_parsing"
)# Install MCP server for any agent
npm install -g parserator-mcp-server
# Use in any MCP-compatible agent
mcp://parserator/parse?schema=Contact&text=email_contentfrom parserator import ParseChain
parser = ParseChain(api_key="your_key")
result = parser.parse(
text="messy data here",
output_schema={"name": "string", "age": "number"}
)from parserator.integrations.crewai import ParseratorTool
parse_tool = ParseratorTool(
name="extract_data",
description="Parse unstructured text into JSON"
)Transform web data instantly while browsing:
- Status: Built and ready for Chrome Web Store submission
- Use: Right-click any text β "Parse with Parserator" β Perfect JSON
- Features: Auto-detect schemas, bulk export, local processing
- Status: Built and packaged (parserator-1.0.0.vsix)
- Use: Select messy data β Ctrl+Shift+P β Generate TypeScript types
- Features: Schema templates, batch processing, framework integration
Extensions will be published to official stores once API is finalized.
Traditional LLMs waste tokens on complex reasoning with large datasets. Parserator uses a two-stage approach:
- Input: Your schema + small data sample (~1K chars)
- Job: Create detailed extraction plan
- LLM: Gemini 1.5 Flash (optimized for reasoning)
- Output: Structured search instructions
- Input: Full dataset + extraction plan
- Job: Execute plan with minimal thinking
- LLM: Gemini 1.5 Flash (optimized for following instructions)
- Output: Clean, validated JSON
- 70% token reduction vs single-LLM approaches
- 95% accuracy on complex data
- Sub-3 second response times
- No vendor lock-in - works with any LLM provider
npm install parseratorpip install parserator- Chrome Extension: Built, pending Chrome Web Store submission
- VS Code Extension: Built, pending VS Code Marketplace submission
# MCP Server - Coming soon
npm install -g parserator-mcp-server
# Framework integrations - In beta
pip install parserator[langchain]
pip install parserator[crewai]
pip install parserator[adk]Contact us for early access to framework integrations.
- API Integration: Parse inconsistent API responses
- Data Migration: Extract from legacy systems
- ETL Pipelines: Intelligent data transformation
- Web Scraping: Handle changing site layouts
- Email Processing: Extract tasks, contacts, dates
- Document Analysis: Parse contracts, invoices, reports
- User Commands: Convert natural language to structured actions
- Research Workflows: Extract key info from papers, articles
- Log Analysis: Structure unstructured log files
- Data Cleaning: Normalize messy datasets
- Import Processing: Handle varied file formats
- Quality Assurance: Validate data consistency
POST https://api.parserator.com/v1/parse
Content-Type: application/json
Authorization: Bearer YOUR_API_KEY
{
"inputData": "Contact: John Doe, Email: john@example.com, Phone: 555-0123",
"outputSchema": {
"contact": "string",
"email": "string",
"phone": "string"
},
"instructions": "Extract contact information"
}{
"success": true,
"parsedData": {
"contact": "John Doe",
"email": "john@example.com",
"phone": "555-0123"
},
"metadata": {
"confidence": 0.96,
"tokensUsed": 1250,
"processingTimeMs": 800
}
}import { Parserator } from 'parserator';
const parser = new Parserator('your-api-key');
const result = await parser.parse({
inputData: 'messy text here',
outputSchema: { name: 'string', age: 'number' }
});
console.log(result.parsedData);from parserator import Parserator
parser = Parserator('your-api-key')
result = parser.parse(
input_data='messy text here',
output_schema={'name': 'string', 'age': 'number'}
)
print(result.parsed_data)Parserator uses a lean shared core architecture for maximum efficiency and maintainability:
βββββββββββββββββββββββββββββββββββββββββββ
β SHARED CORE (@parserator/core) β
β Types, Validation, HTTP Client β
βββββββββββββββββββββββββββββββββββββββββββ
β
ββββββββββΌβββββββββ
β β β
ββββββΌββββ ββββΌββββ ββββΌβββββββββ
βNode SDKβ βPythonβ βExtensions β
β(50KB) β β SDK β β (Chrome, β
β β β(50KB)β β VSCode) β
ββββββββββ ββββββββ βββββββββββββ
β β β
ββββββββββΌβββββββββ
β
βββββββββββΌββββββββββ
β PRODUCTION API β
β 95% Accuracy β
β Architect-Extract β
βββββββββββββββββββββ
- 75% smaller SDK bundles (250KB vs 1MB total)
- Single source of truth for API logic
- Consistent experience across all platforms
- Faster maintenance and feature development
See SHARED_CORE_ARCHITECTURE.md for complete technical details.
Parserator is built on EMA principles - a revolutionary approach to ethical software development:
- Your data is yours - We never store input/output content
- No vendor lock-in - Export everything, switch anytime
- Open standards - JSON, OpenAPI, Docker - universal compatibility
- Transparent pricing - No hidden costs or usage surprises
- Complete data export - All schemas, templates, usage history
- Standard formats - Import into any compatible system
- Migration tools - Seamless transition to other platforms
- Zero retention - Data deleted immediately upon request
- Framework agnostic - Works with any agent development platform
- LLM agnostic - Switch between OpenAI, Anthropic, Google, etc.
- Deployment agnostic - Cloud, on-premise, or hybrid
- Standard protocols - REST API, MCP, GraphQL support
"The ultimate expression of empowerment is the freedom to leave."
- Multi-LLM Support: Working on OpenAI, Anthropic, Google Gemini compatibility
- Schema Validation: Type checking and constraint enforcement
- Batch Processing: Handle multiple documents simultaneously
- Custom Workflows: Chain parsing operations
- Monitoring Dashboard: Parse analytics and performance metrics
Contact us for beta access:
- Email: Gen-rl-millz@parserator.com
- Include: Your use case and which frameworks you're working with
Beta Feedback: GitHub Issues | GitHub Discussions
Currently in beta - Contact us for early access pricing and custom solutions.
- Email: Gen-rl-millz@parserator.com
- Beta Program: Free access for early adopters and feedback providers
- API Reference: Coming soon in
docs/directory - Integration Guides: Available in this repository
- Examples: Check
examples/directory for framework integrations
- GitHub Issues: Bug reports and feature requests
- GitHub Discussions: Community questions and feedback
- YouTube: @parserator - Tutorials and demos coming soon
- LinkedIn: Company Page - Updates and announcements
- Email: Gen-rl-millz@parserator.com
- Response: We'll get back to you as soon as possible
- Beta Support: Priority support for early adopters
| Feature | Parserator | Traditional Parsers | Single-LLM Solutions |
|---|---|---|---|
| Accuracy | 95% | 60-70% | 85% |
| Token Efficiency | 70% less | N/A | Baseline |
| Setup Time | <5 minutes | Hours/Days | 30 minutes |
| Maintenance | Zero | High | Medium |
| Vendor Lock-in | None | High | Medium |
| Schema Flexibility | Unlimited | Fixed | Limited |
Current Focus:
- β Core parsing engine - Two-stage Architect-Extractor pattern
- β Browser extensions - Chrome and VS Code extensions built
- β Agent integrations - LangChain, CrewAI, Google ADK support
- π§ Documentation - API reference and integration guides in progress
- π§ Beta testing - Gathering feedback from early adopters
Planned Features:
- Multi-modal parsing (images, PDFs, audio)
- Enhanced schema validation and templates
- Enterprise deployment options
- Additional framework integrations
Roadmap details will be updated based on community feedback and beta testing results.
MIT License - see LICENSE file for details.
EMA Commitment: This project follows Exoditical Moral Architecture principles, ensuring your right to digital sovereignty and freedom to migrate.
Built with radical conviction by GEN-RL-MiLLz - "The Higher Dimensional Solo Dev"
"Grateful for your support as I grow Hooves & a Horn, taking pole position for the 2026 Agentic Derby."
π Get Started β’ π Documentation β’ π¬ Discord β’ π GitHub
Transform your messy data into agent-ready JSON today.