import numpy as np
def calculate(input_list): if len(input_list) != 9: raise ValueError("List must contain nine numbers.")
# Convert the list to a 3x3 numpy array
matrix = np.array(input_list).reshape(3, 3)
# Calculate required statistics
calculations = {
'mean': [
matrix.mean(axis=0).tolist(), # Mean for each column
matrix.mean(axis=1).tolist(), # Mean for each row
matrix.mean().tolist() # Mean of flattened matrix
],
'variance': [
matrix.var(axis=0).tolist(), # Variance for each column
matrix.var(axis=1).tolist(), # Variance for each row
matrix.var().tolist() # Variance of flattened matrix
],
'standard deviation': [
matrix.std(axis=0).tolist(), # Std dev for each column
matrix.std(axis=1).tolist(), # Std dev for each row
matrix.std().tolist() # Std dev of flattened matrix
],
'max': [
matrix.max(axis=0).tolist(), # Max for each column
matrix.max(axis=1).tolist(), # Max for each row
matrix.max().tolist() # Max of flattened matrix
],
'min': [
matrix.min(axis=0).tolist(), # Min for each column
matrix.min(axis=1).tolist(), # Min for each row
matrix.min().tolist() # Min of flattened matrix
],
'sum': [
matrix.sum(axis=0).tolist(), # Sum for each column
matrix.sum(axis=1).tolist(), # Sum for each row
matrix.sum().tolist() # Sum of flattened matrix
]
}
return calculations