import cv2 import numpy as np import time
print(cv2.version)
capture_video = cv2.VideoCapture("video.mp4")
time.sleep(1) count = 0 background = 0
for i in range(60): return_val, background = capture_video.read() if return_val == False : continue
background = np.flip(background, axis = 1) # flipping of the frame
while (capture_video.isOpened()): return_val, img = capture_video.read() if not return_val : break count = count + 1 img = np.flip(img, axis = 1)
# convert the image - BGR to HSV
# as we focused on detection of red color
# converting BGR to HSV for better
# detection or you can convert it to gray
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
#-------------------------------------BLOCK----------------------------#
# ranges should be carefully chosen
# setting the lower and upper range for mask1
lower_red = np.array([100, 40, 40])
upper_red = np.array([100, 255, 255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
# setting the lower and upper range for mask2
lower_red = np.array([155, 40, 40])
upper_red = np.array([180, 255, 255])
mask2 = cv2.inRange(hsv, lower_red, upper_red)
#----------------------------------------------------------------------#
# the above block of code could be replaced with
# some other code depending upon the color of your cloth
mask1 = mask1 + mask2
# Refining the mask corresponding to the detected red color
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, np.ones((3, 3),
np.uint8), iterations = 2)
mask1 = cv2.dilate(mask1, np.ones((3, 3), np.uint8), iterations = 1)
mask2 = cv2.bitwise_not(mask1)
# Generating the final output
res1 = cv2.bitwise_and(background, background, mask = mask1)
res2 = cv2.bitwise_and(img, img, mask = mask2)
final_output = cv2.addWeighted(res1, 1, res2, 1, 0)
cv2.imshow("INVISIBLE MAN", final_output)
k = cv2.waitKey(10)
if k == 27:
break