Skip to content

MCP Server for Msty Studio Desktop 2.4.0+ Administration - Full support for Local AI, MLX, LLaMA.cpp, and Vibe Proxy services

License

Notifications You must be signed in to change notification settings

DRVBSS/msty-admin-mcp

Repository files navigation

Msty Admin MCP

AI-Powered Administration for Msty Studio Desktop 2.4.0+

An MCP (Model Context Protocol) server that transforms Claude into an intelligent system administrator for Msty Studio Desktop. Query databases, manage configurations, orchestrate local AI models, and build tiered AI workflows—all through natural conversation.

Version License Python Platform Msty Tests Tools

v9.0.0 - Advanced AI Orchestration release with 155 tools! New features include Autonomous Agent Swarms, Intelligent Auto-Router, Cascade Execution, Semantic Caching, Predictive Model Loading, A/B Testing Framework, Cost Intelligence Dashboard, and Dynamic Persona Fusion.


About This Fork

👋 Hey! I'm Dmitri K from DigitalKredit.

I picked up this project when it had 24 tools designed for an older Msty Studio architecture with a separate "Sidecar" service that no longer exists in Msty 2.4.0+.

What I did:

  • 🔧 Rewrote the codebase for Msty 2.4.0+ (services now built into main app)
  • 🏗️ Refactored into a clean modular architecture (30+ modules)
  • 📈 Expanded from 24 tools to 155 fully functional tools
  • Added comprehensive testing (250+ tests)
  • 🚀 Built major new features: AI agent swarms, intelligent routing, cascade execution, semantic caching, cost intelligence, and more

This fork is actively maintained and tested against Msty Studio 2.4.0+.


What's New in v9.0.0

Advanced AI Orchestration - 42 New Tools Across 10 New Phases

Phase Tools Description
Phase 26: Intelligent Auto-Router 4 Zero-config task classification and model routing
Phase 27: Autonomous Agent Swarm 5 Spawn specialized AI agents working in parallel
Phase 28: Background Agents 7 Persistent monitoring agents (Code Sentinel, Doc Keeper)
Phase 29: Semantic Response Cache 5 Embedding-based similarity caching for cost savings
Phase 30: Predictive Model Loading 3 Usage pattern analysis for model pre-warming
Phase 31: Conversation Archaeology 5 Deep search, decision extraction, timeline building
Phase 32: A/B Testing Framework 5 Model comparison experiments with statistical analysis
Phase 33: Cascade Execution 4 Confidence-based model escalation (fast→balanced→capable→expert)
Phase 34: Cost Intelligence 7 Token tracking, budget alerts, local vs cloud comparison
Phase 35: Persona Fusion 6 Dynamically combine personas for complex tasks

New Modules (v9.0.0)

Module Purpose
smart_router.py Intelligent task classification and model routing
agent_swarm.py Multi-agent orchestration with parallel execution
background_agents.py Long-running monitoring agents with alerts
semantic_cache.py Embedding-based response caching
predictive_loader.py Usage pattern learning and prediction
conversation_archaeology.py Deep conversation search and analysis
ab_testing.py A/B experiment framework
cascade.py Tiered model execution with confidence
cost_intelligence.py Cost tracking and optimization
persona_fusion.py Dynamic persona combination
server_extensions_v3.py Extension registration v3

Key Features

🤖 Agent Swarm - Spawn specialized agents (Code, Research, Writing, Analysis) that work in parallel and synthesize results:

swarm_spawn "Build a comprehensive analysis of this codebase"

🎯 Cascade Execution - Start with fast models, escalate to capable ones only when needed:

cascade_smart "Complex reasoning task requiring detailed analysis"

💰 Cost Intelligence - Track spending, compare local vs cloud, get optimization tips:

cost_compare_local_cloud  # Shows 95%+ savings using local models

🔮 Predictive Loading - Learn your usage patterns and pre-warm models:

predict_session_start  # "Based on history, you typically code at 9am"

What's in v8.0.0

36 New Tools Across 10 New Phases

Phase Tools Description
Phase 16: Shadow Personas 5 Multi-perspective conversation analysis
Phase 17: Workspaces 4 Workspace management and data isolation
Phase 18: Real-Time Web 3 Web search, URL fetch, YouTube transcripts
Phase 19: Chat Management 4 Export, clone, branch, merge conversations
Phase 20: Folder Organization 4 Conversation folder management
Phase 21: PII Scrubbing 3 13 PII patterns, GDPR/HIPAA compliance
Phase 22: Embedding Visualization 4 Document clustering and similarity
Phase 23: Health Dashboard 3 Service monitoring and alerts
Phase 24: Configuration Profiles 4 Save/load/compare configurations
Phase 25: Automated Maintenance 3 Cleanup, optimization, health scoring

New Modules (v8.0.0)

Module Purpose
shadow_personas.py Shadow persona integration
workspaces.py Workspace management
realtime_data.py Web/YouTube integration
chat_management.py Chat operations
folders.py Folder organization
pii_tools.py PII detection and scrubbing
embeddings.py Embedding visualization
dashboard.py Health monitoring
profiles.py Configuration profiles
maintenance.py Automated maintenance
server_extensions_v2.py Extension registration v2

Comprehensive Testing

  • 130+ unit tests covering all modules
  • PII pattern detection validated
  • Cosine similarity mathematical tests
  • Maintenance dry-run verification

What's in v7.0.0

35 Tools Across 6 Phases

Phase Tools Description
Phase 10: Knowledge Stacks 5 RAG system management - list, search, analyze
Phase 11: Model Management 6 Download/delete models, find duplicates, storage analysis
Phase 12: Claude↔Local Bridge 5 Intelligent model delegation, multi-model consensus
Phase 13: Turnstile Workflows 7 5 built-in automation templates, dry-run execution
Phase 14: Live Context 5 Real-time system/datetime/Msty context for prompts
Phase 15: Conversation Analytics 5 Usage patterns, content analysis, session metrics

Enhanced Tagging System v2.0

  • Context length awareness: long_context (100K+), very_long_context (250K+), massive_context (500K+)
  • Quantization detection: fp16, 8bit, 6bit, 5bit, 4bit, 3bit
  • Architecture tags: moe, mlx, gguf
  • New size tier: massive (200B+ parameters)

Msty 2.4.0+ Service Support

Service Port Description
Local AI Service 11964 Ollama-compatible API
MLX Service 11973 Apple Silicon optimized models
LLaMA.cpp Service 11454 GGUF model support
Vibe CLI Proxy 8317 Unified proxy for all AI services

What is This?

Msty Admin MCP lets you manage your entire Msty Studio installation through Claude Desktop. Instead of clicking through menus or manually editing config files, just ask Claude:

"Show me my Msty personas and suggest improvements"

"Compare my local models on a coding task"

"What models do I have available across all services?"

"Benchmark my fastest model for coding tasks"

Claude handles the rest—querying databases, calling APIs, analysing results, and presenting actionable insights.


Quick Start

Prerequisites

Installation

# Clone the repository
git clone https://github.com/DBSS/msty-admin-mcp.git
cd msty-admin-mcp

# Create virtual environment
python -m venv .venv
source .venv/bin/activate

# Install dependencies
pip install -r requirements.txt

Claude Desktop Configuration

Important: Claude Desktop doesn't always respect the cwd setting, so we use a shell script launcher.

  1. The repository includes run_msty_server.sh. Make sure it's executable:

    chmod +x run_msty_server.sh
  2. Add to ~/Library/Application Support/Claude/claude_desktop_config.json:

    {
      "mcpServers": {
        "msty-admin": {
          "command": "/absolute/path/to/msty-admin-mcp/run_msty_server.sh",
          "env": {
            "MSTY_TIMEOUT": "30"
          }
        }
      }
    }
  3. Restart Claude Desktop (Cmd+Q, then reopen)

  4. You should see "msty-admin" in your available tools with 155 tools loaded.


Available Tools (155 Total)

Phase 1: Installation & Health (7 tools)

Tool Description
detect_msty_installation Find Msty Studio, verify paths, check running status
read_msty_database Query conversations, personas, prompts, tools
list_configured_tools View MCP toolbox configuration
get_model_providers List AI providers and local models
analyse_msty_health Database integrity, storage, all 4 service status
get_server_status MCP server info and capabilities
scan_database_locations Find database files in common locations

Phase 2: Configuration Management (4 tools)

Tool Description
export_tool_config Export MCP configs for backup or sync
import_tool_config Validate and prepare tools for Msty import
generate_persona Create personas from templates (opus, coder, writer, minimal)
sync_claude_preferences Convert Claude Desktop preferences to Msty persona

Phase 3: Local Model Integration (8 tools)

Tool Description
get_sidecar_status Check all 4 services (Local AI, MLX, LLaMA.cpp, Vibe Proxy)
list_available_models Query models from ALL services with breakdown
query_local_ai_service Direct low-level API access
chat_with_local_model Send messages with automatic metric tracking
recommend_model Hardware-aware model recommendations by use case
list_model_tags Get available tags for smart model selection
find_model_by_tag Find models matching specific tags
get_cache_stats View response cache statistics
clear_cache Clear cached responses

Phase 4: Intelligence & Analytics (5 tools)

Tool Description
get_model_performance_metrics Tokens/sec, latency, error rates over time
analyse_conversation_patterns Privacy-respecting usage analytics
compare_model_responses Same prompt to multiple models, compare quality/speed
optimise_knowledge_stacks Analyse and recommend improvements
suggest_persona_improvements AI-powered persona optimisation

Phase 5: Calibration & Workflow (4 tools)

Tool Description
run_calibration_test Test models across categories with quality scoring
evaluate_response_quality Score any response using heuristic evaluation
identify_handoff_triggers Track patterns that should escalate to Claude
get_calibration_history Historical results with trends and statistics

Phase 6: Advanced Model Management (4 tools)

Tool Description
get_model_details Comprehensive model info (context length, parameters, tags, capabilities)
benchmark_model Performance benchmarks at different context sizes (tokens/sec)
list_local_model_files List MLX and GGUF model files on disk with sizes
estimate_model_requirements Estimate memory/hardware requirements for a model

Phase 7: Conversation Management (3 tools)

Tool Description
export_conversations Export chat history in JSON, Markdown, or CSV format
search_conversations Search through conversations by keyword or title
get_conversation_stats Usage analytics: messages per day, model usage, session lengths

Phase 8: Prompt Templates & Automation (4 tools)

Tool Description
create_prompt_template Create reusable templates with {{variable}} placeholders
list_prompt_templates List all templates, optionally filtered by category
run_prompt_template Execute a template with variable substitutions
smart_model_router Auto-select the best model for a given task description

Phase 9: Backup & System Management (3 tools)

Tool Description
backup_configuration Create comprehensive backup of personas, prompts, templates, tools
restore_configuration Restore configuration from a backup file
get_system_resources CPU, memory, and disk usage relevant to AI inference

Model Tagging System

Msty Admin MCP includes a smart model tagging system with 60+ model-specific overrides for accurate routing.

Available Tags

Category Tags Description
Size large, medium, small Model parameter count (70B+, 13-34B, <13B)
Speed fast Quick response models (Haiku, Flash, Mini, etc.)
Capability coding, reasoning, creative, vision, embedding Specialized capabilities
Context long_context Models with 128K+ context windows
Quality quality High-quality output models
General general General-purpose models

Finding Models by Tag

You: Find me a fast coding model

Claude: Using find_model_by_tag with tag="coding" and prefer_fast=true...

        Found 3 fast coding models:
        1. deepseek-coder-v2-lite (fast, coding, small)
        2. codestral-mini (fast, coding, small)
        3. starcoder2-3b (fast, coding, small)

Smart Model Router

You: What's the best model for writing a poem?

Claude: Using smart_model_router with task="writing a poem"...

        Recommended: claude-3-opus (tags: quality, creative, reasoning, large)
        Reasoning: Creative writing tasks benefit from models with
        the 'creative' tag and high quality output.

Usage Examples

Check Service Status

You: What's the status of my Msty services?

Claude: All 4 services are running:
        ✅ Local AI Service (port 11964) - 2 models
        ✅ MLX Service (port 11973) - 11 models
        ✅ LLaMA.cpp Service (port 11454) - 10 models
        ✅ Vibe CLI Proxy (port 8317) - 36 models

        Total: 59 models available

Benchmark a Model

You: Benchmark my fastest coding model

Claude: Running benchmark on deepseek-coder-v2-lite...

        Results (3 runs each):
        | Context | Tokens/sec | Latency |
        |---------|------------|---------|
        | 50 tokens | 42.3 t/s | 1.2s |
        | 200 tokens | 38.7 t/s | 5.2s |
        | 500 tokens | 35.1 t/s | 14.3s |

        Average: 38.7 tokens/sec

Export Conversations

You: Export my last week's conversations to markdown

Claude: Exported 23 conversations from the last 7 days.

        File: conversations_2026-01-26.md
        Format: Markdown with headers per conversation
        Total messages: 156

Create Prompt Template

You: Create a code review template

Claude: Created template "code-review":

        Template: "Review this {{language}} code for {{focus}}:

                   ```{{language}}
                   {{code}}
                   ```

                   Provide specific suggestions."

        Variables: language, focus, code
        Category: coding

Environment Variables

Customize behavior with these environment variables:

Variable Default Description
MSTY_SIDECAR_HOST 127.0.0.1 Service host address
MSTY_AI_PORT 11964 Local AI Service port
MSTY_MLX_PORT 11973 MLX Service port
MSTY_LLAMACPP_PORT 11454 LLaMA.cpp Service port
MSTY_VIBE_PORT 8317 Vibe CLI Proxy port
MSTY_TIMEOUT 10 API request timeout (seconds)
MSTY_DATABASE_PATH (auto-detect) Override database path

Architecture

┌─────────────────────────────────────────────────────────────┐
│                      Claude Desktop                          │
│                           │                                  │
│                      MCP Protocol                            │
│                           │                                  │
│                ┌──────────┴──────────┐                      │
│                ▼                     ▼                      │
│      ┌─────────────────┐   ┌─────────────────┐             │
│      │ Msty Admin MCP  │   │  Other MCPs     │             │
│      │   (42 tools)    │   │                 │             │
│      └────────┬────────┘   └─────────────────┘             │
└───────────────┼─────────────────────────────────────────────┘
                │
     ┌──────────┴──────────────────────────────┐
     ▼                                         ▼
┌──────────┐                          ┌──────────────────┐
│  Msty    │                          │   Msty Studio    │
│ Database │                          │   2.4.0+ App     │
│ (SQLite) │                          └────────┬─────────┘
└──────────┘                                   │
                          ┌────────────────────┼────────────────────┐
                          ▼                    ▼                    ▼
                   ┌────────────┐      ┌────────────┐      ┌────────────┐
                   │ Local AI   │      │    MLX     │      │ LLaMA.cpp  │
                   │  :11964    │      │   :11973   │      │   :11454   │
                   └────────────┘      └────────────┘      └────────────┘
                          │                    │                    │
                          └────────────────────┼────────────────────┘
                                               ▼
                                        ┌────────────┐
                                        │ Vibe Proxy │
                                        │   :8317    │
                                        └────────────┘

Project Structure

msty-admin-mcp/
├── src/
│   ├── __init__.py         # Package exports
│   ├── constants.py        # Configuration constants
│   ├── models.py           # Data classes
│   ├── errors.py           # Standardized error handling
│   ├── paths.py            # Path resolution utilities
│   ├── database.py         # SQL operations (injection protected)
│   ├── network.py          # API request helpers
│   ├── cache.py            # Response caching
│   ├── tagging.py          # Model tagging system
│   ├── server.py           # Main MCP server (42 tools)
│   └── phase4_5_tools.py   # Metrics and calibration
├── tests/
│   ├── test_server.py      # Integration tests
│   ├── test_constants.py   # Constants tests
│   ├── test_paths.py       # Path utilities tests
│   ├── test_database.py    # Database tests (SQL injection)
│   ├── test_network.py     # Network tests
│   ├── test_cache.py       # Cache tests
│   └── test_tagging.py     # Tagging tests
├── docs/
│   ├── API.md              # API reference & error codes
│   └── DEVELOPMENT.md      # Development guide
├── run_msty_server.sh      # Shell script launcher (required!)
├── requirements.txt
├── pyproject.toml
├── CHANGELOG.md
├── LICENSE
└── README.md

Documentation


Troubleshooting

"ModuleNotFoundError: No module named 'src'"

Claude Desktop isn't running from the correct directory. Make sure you're using the shell script launcher (run_msty_server.sh) instead of calling Python directly.

"No Local AI services are running"

  1. Open Msty Studio
  2. Go to Settings → Local AI / MLX / LLaMA.cpp
  3. Make sure the services show "Running"

Claude doesn't see the msty-admin tools

  1. Check your claude_desktop_config.json has the correct absolute path
  2. Make sure run_msty_server.sh is executable (chmod +x)
  3. Restart Claude Desktop completely (Cmd+Q, then reopen)

Only seeing 2 embedding models

The models shown depend on which service responds first. Use list_available_models to see ALL models from all services with the by_service breakdown.

Database not found

  1. Run detect_msty_installation first to verify paths
  2. Use scan_database_locations to find database files
  3. Set MSTY_DATABASE_PATH environment variable if needed

Security

See docs/API.md for details on:

  • SQL Injection Protection - Table allowlists, parameterized queries
  • API Key Handling - Keys are never logged or returned
  • Network Security - All calls to localhost, configurable timeouts

Contributing

Contributions welcome! Please:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Run tests (pytest tests/ -v)
  4. Commit your changes (git commit -m 'Add amazing feature')
  5. Push to the branch (git push origin feature/amazing-feature)
  6. Open a Pull Request

See docs/DEVELOPMENT.md for detailed contribution guidelines.


Credits

  • Original Author: Pineapple - Created the original msty-admin-mcp
  • v5.0.0+ Fork: DigitalKredit - Msty 2.4.0+ compatibility, modular architecture

License

MIT License - see LICENSE for details.


Acknowledgements

About

MCP Server for Msty Studio Desktop 2.4.0+ Administration - Full support for Local AI, MLX, LLaMA.cpp, and Vibe Proxy services

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages