Configure your applications as easily as possible.
- Comes with built in support for loading from dicts, environment variables, JSON/YAML/TOML files, and AWS SSM Parameter Store.
- Super easy to set up a custom source and load from anywhere.
Type conversion, validation, and hints via Pydantic
# "ConfigSchema" is pydantic's BaseModel renamed and re-exported for easier use
from flex_config import ConfigSchema, construct_config
class Config(ConfigSchema):
a_string: str
an_int: int
# Raises ValidationError
my_bad_config = construct_config(Config, {"a_string": ["not", "a", "string"], "an_int": "seven"})
my_good_config = construct_config(Config, {"a_string": "my_string", "an_int": "7"})
assert isinstance(my_good_config.an_int, int)
from pathlib import Path
from typing import Dict, Any
# "ConfigSchema" is pydantic's BaseModel renamed and re-exported for easier use
from flex_config import ConfigSchema, construct_config, AWSSource, YAMLSource, EnvSource, ConfigSource
class Config(ConfigSchema):
env: str
my_thing: str
def get_ssm_params(config_so_far: Dict[str, Any]) -> ConfigSource:
# env is set to live or dev via environment variables in the deployment environment
env = config_so_far.get("env")
if env == "local": # Not a live deployment, my_thing is in a local yaml file
return {}
return AWSSource(f"my_app/{config_so_far['env']}")
my_config = construct_config(Config, [EnvSource("MY_APP_"), YAMLSource(Path("my_file.yaml")), get_ssm_params])
Basic install: poetry install flex_config
With all optional dependencies (support for AWS SSM, YAML, and TOML): poetry install flex_config -E all
For a full tutorial and API docs, check out the hosted documentation