Skip to content

Commit 0382248

Browse files
authored
Create confusing_number_ii.py
1 parent 3c6ab47 commit 0382248

File tree

1 file changed

+166
-0
lines changed

1 file changed

+166
-0
lines changed

confusing_number_ii.py

Lines changed: 166 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,166 @@
1+
'''
2+
A confusing number is a number that when rotated 180 degrees becomes a different number with each digit valid.
3+
4+
We can rotate digits of a number by 180 degrees to form new digits.
5+
6+
When 0, 1, 6, 8, and 9 are rotated 180 degrees, they become 0, 1, 9, 8, and 6 respectively.
7+
When 2, 3, 4, 5, and 7 are rotated 180 degrees, they become invalid.
8+
Note that after rotating a number, we can ignore leading zeros.
9+
10+
For example, after rotating 8000, we have 0008 which is considered as just 8.
11+
Given an integer n, return the number of confusing numbers in the inclusive range [1, n]
12+
'''
13+
14+
15+
class Solution:
16+
def confusingNumberII(self, N: int) -> int:
17+
rotatables = [1, 0, 6, 8, 9]
18+
rotation_map = {1:1, 0:0, 6:9, 8:8, 9:6}
19+
confusing_number_count = 0
20+
21+
def count_rotatables(cur_num=0):
22+
nonlocal confusing_number_count
23+
if cur_num * 10 > N:
24+
return
25+
for num in rotatables:
26+
next_num = cur_num*10 + num
27+
if next_num == 0:
28+
continue
29+
confusing_number_count += next_num <= N and is_valid_rotation(next_num)
30+
count_rotatables(next_num)
31+
32+
def is_valid_rotation(num):
33+
rotated = 0
34+
cur_num = num
35+
while cur_num:
36+
rotated = rotated * 10 + rotation_map[cur_num%10]
37+
cur_num //= 10
38+
return rotated != num
39+
40+
count_rotatables()
41+
42+
return confusing_number_count
43+
44+
------------------------------------------------------------------------------------------
45+
class Solution:
46+
def confusingNumberII(self, N: int) -> int:
47+
rotations = {1:1, 6:9, 8:8, 9:6, 0:0}
48+
valid = [0, 1, 6, 8, 9]
49+
50+
def backtrack(num, rotation, position):
51+
if num > N:
52+
return
53+
54+
if num != rotation:
55+
count[0] += 1
56+
57+
for digit in valid:
58+
backtrack(num * 10 + digit, rotations[digit] * position + rotation, position * 10)
59+
60+
count = [0]
61+
for digit in valid[1:]:
62+
backtrack(digit, rotations[digit], 10)
63+
return count[0]
64+
65+
------------------------------------------------------------------------
66+
Main idea: Call numbers that are the same as themselves after rotating 180 degrees "cyclic numbers". Call all numbers that are still valid after rotating 180 degrees "valid numbers". The number of confusing numbers is the number of valid numbers minus the number of cyclic numbers.
67+
68+
There are lots of edge cases in this problem so the code is not very clean.
69+
70+
class Solution(object):
71+
def confusingNumberII(self, n):
72+
"""
73+
:type n: int
74+
:rtype: int
75+
"""
76+
N = max(len(str(n)), 3)
77+
g = [-1] * N # g(n) = num of exact n digit cyclic numbers
78+
f = [-1] * N # n digit cyclic where two ends can be 0's
79+
g[0] = 1
80+
g[1] = 2
81+
f[0] = 1
82+
f[1] = 3
83+
for i in range(2,N):
84+
g[i] = 4 * f[i-2]
85+
f[i] = sum(g[j] for j in range(i, -1, -2))
86+
87+
if i%2 != 0:
88+
# we missed all zeros situation for odd i's
89+
f[i] += 1
90+
91+
cds = [0, 1, 6, 8, 9] # confusing digits
92+
A = list(str(n))
93+
A = [int(a) for a in A]
94+
95+
# count the number of valid numbers <= n
96+
valid_count = 0
97+
for i in range(len(A)):
98+
smaller_num = len([j for j in cds if j<A[i]])
99+
valid_count += smaller_num * 5**(len(A)-i-1) # definetly within range
100+
101+
if A[i] not in cds:
102+
break
103+
else:
104+
if i==len(A)-1:
105+
valid_count+=1
106+
print("valid_count", valid_count)
107+
108+
flip = {0:0,1:1,6:9,8:8,9:6}
109+
110+
# count the number of cyclic numbers
111+
ptr = 0
112+
cyclic_count = 0
113+
lastptr = len(A) - 1
114+
backdigits = [] # list of set back digits, start from the last reverse order
115+
while ptr < lastptr:
116+
smaller_num = len([i for i in cds if i<A[ptr]]) #
117+
if smaller_num >= 1: # if 0 < A[ptr]
118+
if len(backdigits) > 0:
119+
cyclic_count += smaller_num * f[(lastptr-ptr-1)]
120+
else:
121+
cyclic_count += (smaller_num-1) * f[(lastptr-ptr-1)] # if not 0
122+
cyclic_count += sum(g[0:(lastptr-ptr)+1]) # if we choose 0
123+
124+
if A[ptr] in cds:
125+
backdigits.insert(0, flip[A[ptr]])
126+
ptr += 1
127+
lastptr -= 1
128+
else:
129+
break
130+
131+
print("cyclic", cyclic_count)
132+
133+
# check if we reached the middle
134+
if ptr > lastptr:
135+
# strart from the ptr, if everything fixed so far is fine, add 1
136+
adder = 1
137+
j = 0
138+
for i in range(ptr, len(A)):
139+
if A[i] > backdigits[j]:
140+
adder = 1
141+
break
142+
elif A[i] < backdigits[j]:
143+
adder = 0
144+
break
145+
j += 1
146+
cyclic_count += adder
147+
elif ptr == lastptr:
148+
# strart from the ptr, if everything fixed so far is fine, add 1
149+
single_cyclic_set = [0,1,8]
150+
cyclic_count += len([i for i in single_cyclic_set if i<A[ptr]])
151+
# count ways for the center digit. These will be smaller than A
152+
if A[ptr] in single_cyclic_set:
153+
adder = 1
154+
j = 0
155+
for i in range(ptr+1, len(A)):
156+
if A[i] < backdigits[j]:
157+
adder = 0
158+
break
159+
elif A[i] > backdigits[j]:
160+
adder = 1
161+
break
162+
j += 1
163+
cyclic_count += adder
164+
165+
result = valid_count - cyclic_count
166+
return result

0 commit comments

Comments
 (0)