-
Notifications
You must be signed in to change notification settings - Fork 575
[Go] googleai.Init: return actions #372
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -104,7 +104,7 @@ func main() { | |
| fmt.Fprintln(os.Stderr, "You can get an API key at https://ai.google.dev.") | ||
| os.Exit(1) | ||
| } | ||
| err := googleai.Init(context.Background(), googleai.Config{APIKey: apiKey}) | ||
| _, _, err := googleai.Init(context.Background(), googleai.Config{APIKey: apiKey}) | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Just to understand, we could do instead here: gs, _, err := googleai.Init(context.Background(), googleai.Config{APIKey: apiKey, Models: []string{"gemini-1.5-pro"}}) ? It seems weird to me that the empty list means "initialize them all". In the call above, the plugin will initialize all the embedders because we didn't specify, and didn't need, any embedders. Maybe there is a more explicit way to say "all"? config.Models == []string{"*"}? |
||
| if err != nil { | ||
| log.Fatal(err) | ||
| } | ||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,215 @@ | ||
| // Copyright 2024 Google LLC | ||
| // | ||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||
| // you may not use this file except in compliance with the License. | ||
| // You may obtain a copy of the License at | ||
| // | ||
| // http://www.apache.org/licenses/LICENSE-2.0 | ||
| // | ||
| // Unless required by applicable law or agreed to in writing, software | ||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| // See the License for the specific language governing permissions and | ||
| // limitations under the License. | ||
|
|
||
| // This program shows how to use Postgres's pgvector extension with Genkit. | ||
|
|
||
| // This program can be manually tested like so: | ||
| // | ||
| // In development mode (with the environment variable GENKIT_ENV="dev"): | ||
| // Start the server listening on port 3100: | ||
| // | ||
| // go run . -dbconn "$DBCONN" -apikey $API_KEY & | ||
| // | ||
| // Ask a question: | ||
| // | ||
| // curl -d '{"Show": "Best Friends", "Question": "Who does Alice love?"}' http://localhost:3400/askQuestion | ||
| package main | ||
|
|
||
| import ( | ||
| "context" | ||
| "database/sql" | ||
| "errors" | ||
| "flag" | ||
| "fmt" | ||
| "log" | ||
|
|
||
| "github.com/firebase/genkit/go/ai" | ||
| "github.com/firebase/genkit/go/genkit" | ||
| "github.com/firebase/genkit/go/plugins/googleai" | ||
| _ "github.com/lib/pq" | ||
| pgv "github.com/pgvector/pgvector-go" | ||
| ) | ||
|
|
||
| var ( | ||
| connString = flag.String("dbconn", "", "database connection string") | ||
| apiKey = flag.String("apikey", "", "Gemini API key") | ||
| index = flag.Bool("index", false, "index the existing data") | ||
| ) | ||
|
|
||
| func main() { | ||
| flag.Parse() | ||
| if err := run(); err != nil { | ||
| log.Fatal(err) | ||
| } | ||
| } | ||
|
|
||
| func run() error { | ||
| if *connString == "" { | ||
| return errors.New("need -dbconn") | ||
| } | ||
| if *apiKey == "" { | ||
| return errors.New("need -apikey") | ||
| } | ||
| ctx := context.Background() | ||
| _, ems, err := googleai.Init(ctx, googleai.Config{ | ||
| APIKey: *apiKey, | ||
| Embedders: []string{"embedding-001"}, | ||
| }) | ||
| if err != nil { | ||
| return err | ||
| } | ||
| embedder := ems[0] | ||
|
|
||
| db, err := sql.Open("postgres", *connString) | ||
| if err != nil { | ||
| return err | ||
| } | ||
| defer db.Close() | ||
|
|
||
| if *index { | ||
| indexer := defineIndexer(db, embedder) | ||
| if err := indexExistingRows(ctx, db, indexer); err != nil { | ||
| return err | ||
| } | ||
| } | ||
|
|
||
| retriever := defineRetriever(db, embedder) | ||
|
|
||
| type input struct { | ||
| Question string | ||
| Show string | ||
| } | ||
|
|
||
| genkit.DefineFlow("askQuestion", func(ctx context.Context, in input, _ genkit.NoStream) (string, error) { | ||
| res, err := ai.Retrieve(ctx, retriever, &ai.RetrieverRequest{ | ||
| Document: &ai.Document{Content: []*ai.Part{ai.NewTextPart(in.Question)}}, | ||
| Options: in.Show, | ||
| }) | ||
| if err != nil { | ||
| return "", err | ||
| } | ||
| for _, doc := range res.Documents { | ||
| fmt.Printf("%+v %q\n", doc.Metadata, doc.Content[0].Text) | ||
| } | ||
| // Use documents in RAG prompts. | ||
| return "", nil | ||
| }) | ||
|
|
||
| return genkit.StartFlowServer("") | ||
| } | ||
|
|
||
| const provider = "pgvector" | ||
|
|
||
| func defineRetriever(db *sql.DB, embedder *ai.EmbedderAction) *ai.RetrieverAction { | ||
| f := func(ctx context.Context, req *ai.RetrieverRequest) (*ai.RetrieverResponse, error) { | ||
| vals, err := ai.Embed(ctx, embedder, &ai.EmbedRequest{Document: req.Document}) | ||
| if err != nil { | ||
| return nil, err | ||
| } | ||
| rows, err := db.QueryContext(ctx, ` | ||
| SELECT episode_id, season_number, chunk as content | ||
| FROM embeddings | ||
| WHERE show_id = $1 | ||
| ORDER BY embedding <#> $2 | ||
| LIMIT 2`, | ||
| req.Options, pgv.NewVector(vals)) | ||
| if err != nil { | ||
| return nil, err | ||
| } | ||
| defer rows.Close() | ||
|
|
||
| res := &ai.RetrieverResponse{} | ||
| for rows.Next() { | ||
| var eid, sn int | ||
| var content string | ||
| if err := rows.Scan(&eid, &sn, &content); err != nil { | ||
| return nil, err | ||
| } | ||
| meta := map[string]any{ | ||
| "episode_id": eid, | ||
| "season_number": sn, | ||
| } | ||
| doc := &ai.Document{ | ||
| Content: []*ai.Part{ai.NewTextPart(content)}, | ||
| Metadata: meta, | ||
| } | ||
| res.Documents = append(res.Documents, doc) | ||
| } | ||
| if err := rows.Err(); err != nil { | ||
| return nil, err | ||
| } | ||
| return res, nil | ||
| } | ||
| return ai.DefineRetriever(provider, "shows", f) | ||
| } | ||
|
|
||
| func defineIndexer(db *sql.DB, embedder *ai.EmbedderAction) *ai.IndexerAction { | ||
| // The indexer assumes that each Document has a single part, to be embedded, and metadata fields | ||
| // for the table primary key: show_id, season_number, episode_id. | ||
| const query = ` | ||
| UPDATE embeddings | ||
| SET embedding = $4 | ||
| WHERE show_id = $1 AND season_number = $2 AND episode_id = $3 | ||
| ` | ||
| return ai.DefineIndexer(provider, "shows", func(ctx context.Context, req *ai.IndexerRequest) error { | ||
| for i, doc := range req.Documents { | ||
| vals, err := ai.Embed(ctx, embedder, &ai.EmbedRequest{Document: doc}) | ||
| if err != nil { | ||
| return err | ||
| } | ||
| args := make([]any, 4) | ||
| for j, k := range []string{"show_id", "season_number", "episode_id"} { | ||
| if a, ok := doc.Metadata[k]; ok { | ||
| args[j] = a | ||
| } else { | ||
| return fmt.Errorf("doc[%d]: missing metadata key %q", i, k) | ||
| } | ||
| } | ||
| args[3] = pgv.NewVector(vals) | ||
| if _, err := db.ExecContext(ctx, query, args...); err != nil { | ||
| return err | ||
| } | ||
| } | ||
| return nil | ||
| }) | ||
| } | ||
|
|
||
| func indexExistingRows(ctx context.Context, db *sql.DB, indexer *ai.IndexerAction) error { | ||
| rows, err := db.QueryContext(ctx, `SELECT show_id, season_number, episode_id, chunk FROM embeddings`) | ||
| if err != nil { | ||
| return err | ||
| } | ||
| defer rows.Close() | ||
|
|
||
| req := &ai.IndexerRequest{} | ||
| for rows.Next() { | ||
| var sid, chunk string | ||
| var sn, eid int | ||
| if err := rows.Scan(&sid, &sn, &eid, &chunk); err != nil { | ||
| return err | ||
| } | ||
| req.Documents = append(req.Documents, &ai.Document{ | ||
| Content: []*ai.Part{ai.NewTextPart(chunk)}, | ||
| Metadata: map[string]any{ | ||
| "show_id": sid, | ||
| "season_number": sn, | ||
| "episode_id": eid, | ||
| }, | ||
| }) | ||
| } | ||
| if err := rows.Err(); err != nil { | ||
| return err | ||
| } | ||
| return ai.Index(ctx, indexer, req) | ||
| } |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,22 @@ | ||
| -- This SQL enables the vector extension and creates the table and data used | ||
| -- in the accompanying sample. | ||
|
|
||
| CREATE EXTENSION IF NOT EXISTS vector; | ||
|
|
||
| CREATE TABLE embeddings ( | ||
| show_id TEXT NOT NULL, | ||
| season_number INTEGER NOT NULL, | ||
| episode_id INTEGER NOT NULL, | ||
| chunk TEXT, | ||
| embedding vector(768), | ||
| PRIMARY KEY (show_id, season_number, episode_id) | ||
| ); | ||
|
|
||
| INSERT INTO embeddings (show_id, season_number, episode_id, chunk) VALUES | ||
| ('La Vie', 1, 1, 'Natasha confesses her love for Pierre.'), | ||
| ('La Vie', 1, 2, 'Pierre and Natasha become engaged.'), | ||
| ('La Vie', 1, 3, 'Margot and Henri divorce.'), | ||
| ('Best Friends', 1, 1, 'Alice confesses her love for Oscar.'), | ||
| ('Best Friends', 1, 2, 'Oscar and Alice become engaged.'), | ||
| ('Best Friends', 1, 3, 'Bob and Pat divorce.') | ||
| ; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
s/the/this/