Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
341 changes: 341 additions & 0 deletions .ipynb_checkpoints/faq_categories-checkpoint.json

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
---
_schema: default
title: What does the FluxMonitor record?
date: 2025-09-08 17:29:25
enabled: true
category: Monitors
_inputs:
title:
type: text
label: QUESTION TITLE
enabled:
type: switch
hidden: true
date:
type: datetime
label: DATE
instance_value: NOW
category:
type: select
options:
values: data.faq_categories
value_key: key
preview:
text:
- key: category_name
---
The FluxMonitor records field data tangential $E$ and $H$ fields colocated to the cell boundaries in the monitor's 2D plane grid. It then computes and integrates the Poynting vector, returning the real part of this integral as the flux.
<div> </div>
<center>
Real$(\sum\limits_{\text{cells in monitor}}\frac{1}{2}(E_1\cdot H_2^*-E_2\cdot H_1^*)dA_{\text{cell}})$
</center><br>
where $dA$ is the area of each cell in the monitor, and the field components 1 and 2 are given depending on the monitor geometry: for $x$-normal monitors, 1 is $y$ and 2 is $z$; for $y$-normal monitors, 1 is $x$ and 2 is $z$; for $z$-normal monitors, 1 is $x$ and 2 is $y$. See the code [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/_modules/tidy3d/components/data/monitor_data.html#ElectromagneticFieldData).
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
---
_schema: default
title: What is the formula for ContinuousWave?
date: 2025-09-05 17:29:25
enabled: true
category: Sources
_inputs:
title:
type: text
label: QUESTION TITLE
enabled:
type: switch
hidden: true
date:
type: datetime
label: DATE
instance_value: NOW
category:
type: select
options:
values: data.faq_categories
value_key: key
preview:
text:
- key: category_name
---
The ContinuousWave sourcetime, if the DC component is zeroed out, has the following formula:
<div> </div>
<center>
$A(1+e^{-\frac{(t-t_o*t_w)}{t_w}})^{-1}e^{i\phi}e^{-i\omega_0 t}$
</center><br>
<div>where $A$ is the amplitude, $t_o$ is the time offset, $t_w=\frac{1}{2\pi f_{width}}$ is the width of the pulse in seconds, $\phi$ is the phase shift, and $\omega_0=2\pi f_0$.</div>
<div>See the code [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/_modules/tidy3d/components/source/time.html#ContinuousWave).</div>
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
---
_schema: default
title: What is the formula for GaussianBeam?
date: 2025-09-05 17:29:25
enabled: true
category: Sources
_inputs:
title:
type: text
label: QUESTION TITLE
enabled:
type: switch
hidden: true
date:
type: datetime
label: DATE
instance_value: NOW
category:
type: select
options:
values: data.faq_categories
value_key: key
preview:
text:
- key: category_name
---
The GaussianBeam source has the following scalar field amplitude, in cylindrical coordinates:
<div> </div>
<center>
$u(r,z)=\frac{w_0}{w(z)}e^{-\frac{r^2}{w(z)^2}}e^{i(zk_0 + \frac{r^2k_0}{2R(z)} - \psi_g)}$
</center><br>
where:
<ul>
<li>$z$ is the propagation direction</li>
<li>$k_0=\frac{2\pi nf}{c}$ are the wavenumbers of the frequencies $f$ where the beam is sampled</li>
<li>$w_0$ is the beam waist</li>
<li>$w(z)=w_0\sqrt{1 + \frac{(z + z_0)^2}{z_r}}$, where $z_0$ is the waist distance and $z_r=\frac{1}{2}w_0^2k_0$ is the Rayleigh range</li>
<li>$R(z)=z(1 + (\frac{z_r}{z})^2)$ is the radius of curvature of the wavefront at $z$</li>
<li>$\psi_g=\arctan(\frac{z+z_0}{z_r})-\arctan(\frac{z_0}{z_r})$ is the Gouy phase</li>
</ul>

<div>See the code [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/_modules/tidy3d/components/beam.html#GaussianBeamProfile).</div>
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
---
_schema: default
title: What is the formula for GaussianPulse?
date: 2025-09-05 17:29:25
enabled: true
category: Sources
_inputs:
title:
type: text
label: QUESTION TITLE
enabled:
type: switch
hidden: true
date:
type: datetime
label: DATE
instance_value: NOW
category:
type: select
options:
values: data.faq_categories
value_key: key
preview:
text:
- key: category_name
---
The GaussianPulse sourcetime, if the DC component is zeroed out, has the following formula:
<div> </div>
<center>
$(i+\frac{t}{t_w^2\omega_0})Ae^{i\phi}e^{-i\omega_0 t}e^{-\frac{(t - t_o*t_w)^2}{2t_w^2}}$
</center><br>
<div> </div>
<div>If the DC component is not zeroed out, the formula is</div><br>
<center>
$iAe^{i\phi}e^{-i\omega_0 t}e^{-\frac{(t - t_o*t_w)^2}{2t_w^2}}$
</center><br>
<div>where $A$ is the amplitude, $t_o$ is the time offset, $t_w=\frac{1}{2\pi f_{width}}$ is the width of the pulse in seconds, $\phi$ is the phase shift, and $\omega_0=2\pi f_0$.</div>
<div>See the code [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/_modules/tidy3d/components/source/time.html#GaussianPulse).</div>
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
---
_schema: default
title: What is the formula for PlaneWave?
date: 2025-09-05 17:29:25
enabled: true
category: Sources
_inputs:
title:
type: text
label: QUESTION TITLE
enabled:
type: switch
hidden: true
date:
type: datetime
label: DATE
instance_value: NOW
category:
type: select
options:
values: data.faq_categories
value_key: key
preview:
text:
- key: category_name
---
The PlaneWave source has the following scalar field amplitude:
<div> </div>
<center>
$u(z)=e^{ik_z z}$
</center><br>
where $z$ is the propagation direction and $k_0=\frac{2\pi nf}{c}$ are the wavenumbers of the frequencies $f$ where the beam is sampled. If the source is specified as a fixed angle source, $k_0$ is multiplied by $\cos\theta$.

<div>See the code [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/_modules/tidy3d/components/beam.html#PlaneWaveBeamProfile).</div>
32 changes: 32 additions & 0 deletions _faqs/what-does-the-FluxMonitor-record.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
---
_schema: default
title: What does the FluxMonitor record?
date: 2025-09-08 17:29:25
enabled: true
category: Monitors
_inputs:
title:
type: text
label: QUESTION TITLE
enabled:
type: switch
hidden: true
date:
type: datetime
label: DATE
instance_value: NOW
category:
type: select
options:
values: data.faq_categories
value_key: key
preview:
text:
- key: category_name
---
The FluxMonitor records field data tangential $E$ and $H$ fields colocated to the cell boundaries in the monitor's 2D plane grid. It then computes and integrates the Poynting vector, returning the real part of this integral as the flux.
<div> </div>
<center>
Real$(\sum\limits_{\text{cells in monitor}}\frac{1}{2}(E_1\cdot H_2^*-E_2\cdot H_1^*)dA_{\text{cell}})$
</center><br>
where $dA$ is the area of each cell in the monitor, and the field components 1 and 2 are given depending on the monitor geometry: for $x$-normal monitors, 1 is $y$ and 2 is $z$; for $y$-normal monitors, 1 is $x$ and 2 is $z$; for $z$-normal monitors, 1 is $x$ and 2 is $y$. See the code [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/_modules/tidy3d/components/data/monitor_data.html#ElectromagneticFieldData).
33 changes: 33 additions & 0 deletions _faqs/what-is-the-formula-for-ContinuousWave.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
---
_schema: default
title: What is the formula for ContinuousWave?
date: 2025-09-05 17:29:25
enabled: true
category: Sources
_inputs:
title:
type: text
label: QUESTION TITLE
enabled:
type: switch
hidden: true
date:
type: datetime
label: DATE
instance_value: NOW
category:
type: select
options:
values: data.faq_categories
value_key: key
preview:
text:
- key: category_name
---
The ContinuousWave sourcetime, if the DC component is zeroed out, has the following formula:
<div> </div>
<center>
$A(1+e^{-\frac{(t-t_o*t_w)}{t_w}})^{-1}e^{i\phi}e^{-i\omega_0 t}$
</center><br>
<div>where $A$ is the amplitude, $t_o$ is the time offset, $t_w=\frac{1}{2\pi f_{width}}$ is the width of the pulse in seconds, $\phi$ is the phase shift, and $\omega_0=2\pi f_0$.</div>
<div>See the code [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/_modules/tidy3d/components/source/time.html#ContinuousWave).</div>
42 changes: 42 additions & 0 deletions _faqs/what-is-the-formula-for-GaussianBeam.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
---
_schema: default
title: What is the formula for GaussianBeam?
date: 2025-09-05 17:29:25
enabled: true
category: Sources
_inputs:
title:
type: text
label: QUESTION TITLE
enabled:
type: switch
hidden: true
date:
type: datetime
label: DATE
instance_value: NOW
category:
type: select
options:
values: data.faq_categories
value_key: key
preview:
text:
- key: category_name
---
The GaussianBeam source has the following scalar field amplitude, in cylindrical coordinates:
<div> </div>
<center>
$u(r,z)=\frac{w_0}{w(z)}e^{-\frac{r^2}{w(z)^2}}e^{i(zk_0 + \frac{r^2k_0}{2R(z)} - \psi_g)}$
</center><br>
where:
<ul>
<li>$z$ is the propagation direction</li>
<li>$k_0=\frac{2\pi nf}{c}$ are the wavenumbers of the frequencies $f$ where the beam is sampled</li>
<li>$w_0$ is the beam waist</li>
<li>$w(z)=w_0\sqrt{1 + \frac{(z + z_0)^2}{z_r}}$, where $z_0$ is the waist distance and $z_r=\frac{1}{2}w_0^2k_0$ is the Rayleigh range</li>
<li>$R(z)=z(1 + (\frac{z_r}{z})^2)$ is the radius of curvature of the wavefront at $z$</li>
<li>$\psi_g=\arctan(\frac{z+z_0}{z_r})-\arctan(\frac{z_0}{z_r})$ is the Gouy phase</li>
</ul>

<div>See the code [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/_modules/tidy3d/components/beam.html#GaussianBeamProfile).</div>
38 changes: 38 additions & 0 deletions _faqs/what-is-the-formula-for-GaussianPulse.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
---
_schema: default
title: What is the formula for GaussianPulse?
date: 2025-09-05 17:29:25
enabled: true
category: Sources
_inputs:
title:
type: text
label: QUESTION TITLE
enabled:
type: switch
hidden: true
date:
type: datetime
label: DATE
instance_value: NOW
category:
type: select
options:
values: data.faq_categories
value_key: key
preview:
text:
- key: category_name
---
The GaussianPulse sourcetime, if the DC component is zeroed out, has the following formula:
<div> </div>
<center>
$(i+\frac{t}{t_w^2\omega_0})Ae^{i\phi}e^{-i\omega_0 t}e^{-\frac{(t - t_o*t_w)^2}{2t_w^2}}$
</center><br>
<div> </div>
<div>If the DC component is not zeroed out, the formula is</div><br>
<center>
$iAe^{i\phi}e^{-i\omega_0 t}e^{-\frac{(t - t_o*t_w)^2}{2t_w^2}}$
</center><br>
<div>where $A$ is the amplitude, $t_o$ is the time offset, $t_w=\frac{1}{2\pi f_{width}}$ is the width of the pulse in seconds, $\phi$ is the phase shift, and $\omega_0=2\pi f_0$.</div>
<div>See the code [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/_modules/tidy3d/components/source/time.html#GaussianPulse).</div>
34 changes: 34 additions & 0 deletions _faqs/what-is-the-formula-for-PlaneWave.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
---
_schema: default
title: What is the formula for PlaneWave?
date: 2025-09-05 17:29:25
enabled: true
category: Sources
_inputs:
title:
type: text
label: QUESTION TITLE
enabled:
type: switch
hidden: true
date:
type: datetime
label: DATE
instance_value: NOW
category:
type: select
options:
values: data.faq_categories
value_key: key
preview:
text:
- key: category_name
---
The PlaneWave source has the following scalar field amplitude:
<div> </div>
<center>
$u(z)=e^{ik_z z}$
</center><br>
where $z$ is the propagation direction and $k_0=\frac{2\pi nf}{c}$ are the wavenumbers of the frequencies $f$ where the beam is sampled. If the source is specified as a fixed angle source, $k_0$ is multiplied by $\cos\theta$.

<div>See the code [here](https://docs.flexcompute.com/projects/tidy3d/en/latest/_modules/tidy3d/components/beam.html#PlaneWaveBeamProfile).</div>
Loading