-
Notifications
You must be signed in to change notification settings - Fork 13.7k
Closed
Labels
Description
Name and Version
build: 4465 (9a48399) with gcc (conda-forge gcc 13.3.0-1) 13.3.0 for x86_64-conda-linux-gnu
Operating systems
Linux
GGML backends
CPU
Hardware
2x Intel Xeon 24 core (Kaggle)
Models
DeepSeek-V2.5: https://huggingface.co/bartowski/DeepSeek-V2.5-GGUF/tree/main/DeepSeek-V2.5-Q4_0
Problem description & steps to reproduce
The problem is that a part of the memory was used for "CPU_AARCH64 model buffer". Normally the model takes only 150GB of RAM, now it takes 260GB and loads much slower. Command line: /root/llama.cpp/build/bin/llama-server -m /dev/shm/DeepSeek-V2.5-Q4_0-00001-of-00004.gguf -t 72. This doesn't appear when using Q4_K_M.
Compile commands:
git clone https://github.com/ggerganov/llama.cpp ~/llama.cpp
cd ~/llama.cpp && cmake -G Ninja -B build && cmake --build build --config Release -j 64
First Bad Commit
No response
Relevant log output
build: 4465 (9a483999) with gcc (conda-forge gcc 13.3.0-1) 13.3.0 for x86_64-conda-linux-gnu
system info: n_threads = 72, n_threads_batch = 72, total_threads = 96
system_info: n_threads = 72 (n_threads_batch = 72) / 96 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 95
main: loading model
srv load_model: loading model '/dev/shm/DeepSeek-V2.5-Q4_0-00001-of-00004.gguf'
llama_model_loader: additional 3 GGUFs metadata loaded.
llama_model_loader: loaded meta data with 53 key-value pairs and 959 tensors from /dev/shm/DeepSeek-V2.5-Q4_0-00001-of-00004.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = deepseek2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = DeepSeek V2.5
llama_model_loader: - kv 3: general.version str = V2.5
llama_model_loader: - kv 4: general.basename str = DeepSeek
llama_model_loader: - kv 5: general.size_label str = 160x14B
llama_model_loader: - kv 6: general.license str = other
llama_model_loader: - kv 7: general.license.name str = deepseek
llama_model_loader: - kv 8: general.license.link str = https://github.com/deepseek-ai/DeepSe...
llama_model_loader: - kv 9: deepseek2.block_count u32 = 60
llama_model_loader: - kv 10: deepseek2.context_length u32 = 163840
llama_model_loader: - kv 11: deepseek2.embedding_length u32 = 5120
llama_model_loader: - kv 12: deepseek2.feed_forward_length u32 = 12288
llama_model_loader: - kv 13: deepseek2.attention.head_count u32 = 128
llama_model_loader: - kv 14: deepseek2.attention.head_count_kv u32 = 128
llama_model_loader: - kv 15: deepseek2.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 16: deepseek2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 17: deepseek2.expert_used_count u32 = 6
llama_model_loader: - kv 18: general.file_type u32 = 2
llama_model_loader: - kv 19: deepseek2.leading_dense_block_count u32 = 1
llama_model_loader: - kv 20: deepseek2.vocab_size u32 = 102400
llama_model_loader: - kv 21: deepseek2.attention.q_lora_rank u32 = 1536
llama_model_loader: - kv 22: deepseek2.attention.kv_lora_rank u32 = 512
llama_model_loader: - kv 23: deepseek2.attention.key_length u32 = 192
llama_model_loader: - kv 24: deepseek2.attention.value_length u32 = 128
llama_model_loader: - kv 25: deepseek2.expert_feed_forward_length u32 = 1536
llama_model_loader: - kv 26: deepseek2.expert_count u32 = 160
llama_model_loader: - kv 27: deepseek2.expert_shared_count u32 = 2
llama_model_loader: - kv 28: deepseek2.expert_weights_scale f32 = 16.000000
llama_model_loader: - kv 29: deepseek2.rope.dimension_count u32 = 64
llama_model_loader: - kv 30: deepseek2.rope.scaling.type str = yarn
llama_model_loader: - kv 31: deepseek2.rope.scaling.factor f32 = 40.000000
llama_model_loader: - kv 32: deepseek2.rope.scaling.original_context_length u32 = 4096
llama_model_loader: - kv 33: deepseek2.rope.scaling.yarn_log_multiplier f32 = 0.100000
llama_model_loader: - kv 34: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 35: tokenizer.ggml.pre str = deepseek-llm
llama_model_loader: - kv 36: tokenizer.ggml.tokens arr[str,102400] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 37: tokenizer.ggml.token_type arr[i32,102400] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 38: tokenizer.ggml.merges arr[str,99757] = ["Ġ Ġ", "Ġ t", "Ġ a", "i n", "h e...
llama_model_loader: - kv 39: tokenizer.ggml.bos_token_id u32 = 100000
llama_model_loader: - kv 40: tokenizer.ggml.eos_token_id u32 = 100001
llama_model_loader: - kv 41: tokenizer.ggml.padding_token_id u32 = 100001
llama_model_loader: - kv 42: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 43: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 44: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 45: general.quantization_version u32 = 2
llama_model_loader: - kv 46: quantize.imatrix.file str = /models_out/DeepSeek-V2.5-GGUF/DeepSe...
llama_model_loader: - kv 47: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt
llama_model_loader: - kv 48: quantize.imatrix.entries_count i32 = 716
llama_model_loader: - kv 49: quantize.imatrix.chunks_count i32 = 139
llama_model_loader: - kv 50: split.no u16 = 0
llama_model_loader: - kv 51: split.count u16 = 4
llama_model_loader: - kv 52: split.tensors.count i32 = 959
llama_model_loader: - type f32: 300 tensors
llama_model_loader: - type q4_0: 645 tensors
llama_model_loader: - type q4_1: 13 tensors
llama_model_loader: - type q6_K: 1 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_0
print_info: file size = 124.23 GiB (4.53 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 18
load: token to piece cache size = 0.6411 MB
print_info: arch = deepseek2
print_info: vocab_only = 0
print_info: n_ctx_train = 163840
print_info: n_embd = 5120
print_info: n_layer = 60
print_info: n_head = 128
print_info: n_head_kv = 128
print_info: n_rot = 64
print_info: n_swa = 0
print_info: n_embd_head_k = 192
print_info: n_embd_head_v = 128
print_info: n_gqa = 1
print_info: n_embd_k_gqa = 24576
print_info: n_embd_v_gqa = 16384
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: n_ff = 12288
print_info: n_expert = 160
print_info: n_expert_used = 6
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 0
print_info: rope scaling = yarn
print_info: freq_base_train = 10000.0
print_info: freq_scale_train = 0.025
print_info: n_ctx_orig_yarn = 4096
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 236B
print_info: model params = 235.74 B
print_info: general.name = DeepSeek V2.5
print_info: n_layer_dense_lead = 1
print_info: n_lora_q = 1536
print_info: n_lora_kv = 512
print_info: n_ff_exp = 1536
print_info: n_expert_shared = 2
print_info: expert_weights_scale = 16.0
print_info: expert_weights_norm = 0
print_info: expert_gating_func = softmax
print_info: rope_yarn_log_mul = 0.1000
print_info: vocab type = BPE
print_info: n_vocab = 102400
print_info: n_merges = 99757
print_info: BOS token = 100000 '<|begin▁of▁sentence|>'
print_info: EOS token = 100001 '<|end▁of▁sentence|>'
print_info: EOT token = 100001 '<|end▁of▁sentence|>'
print_info: PAD token = 100001 '<|end▁of▁sentence|>'
print_info: LF token = 126 'Ä'
print_info: FIM PRE token = 100003 '<|fim▁begin|>'
print_info: FIM SUF token = 100002 '<|fim▁hole|>'
print_info: FIM MID token = 100004 '<|fim▁end|>'
print_info: EOG token = 100001 '<|end▁of▁sentence|>'
print_info: max token length = 256
load_tensors: CPU_Mapped model buffer size = 37602.27 MiB
load_tensors: CPU_Mapped model buffer size = 34353.59 MiB
load_tensors: CPU_Mapped model buffer size = 36378.63 MiB
load_tensors: CPU_Mapped model buffer size = 12801.23 MiB
load_tensors: CPU_AARCH64 model buffer size = 121738.36 MiB
llama_init_from_model: n_seq_max = 1
llama_init_from_model: n_ctx = 4096
llama_init_from_model: n_ctx_per_seq = 4096
llama_init_from_model: n_batch = 2048
llama_init_from_model: n_ubatch = 512
llama_init_from_model: flash_attn = 0
llama_init_from_model: freq_base = 10000.0
llama_init_from_model: freq_scale = 0.025
llama_init_from_model: n_ctx_per_seq (4096) < n_ctx_train (163840) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 60, can_shift = 0
llama_kv_cache_init: CPU KV buffer size = 19200.00 MiB
llama_init_from_model: KV self size = 19200.00 MiB, K (f16): 11520.00 MiB, V (f16): 7680.00 MiB
llama_init_from_model: CPU output buffer size = 0.39 MiB
llama_init_from_model: CPU compute buffer size = 1174.01 MiB
llama_init_from_model: graph nodes = 4480
llama_init_from_model: graph splits = 1
common_init_from_params: KV cache shifting is not supported for this model, disabling KV cache shifting
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 4096
main: model loaded
main: chat template, chat_template: (built-in), example_format: 'You are a helpful assistant
<|User|>Hello<|Assistant|>Hi there<|end▁of▁sentence|><|User|>How are you?<|Assistant|>'
main: server is listening on http://127.0.0.1:8080 - starting the main loop
srv update_slots: all slots are idlesomeone13574 and ZoontSthuongshoo, mtasic85 and ZoontS