-
Notifications
You must be signed in to change notification settings - Fork 13.8k
Description
Name and Version
ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = Adreno (TM) 732 (Qualcomm Technologies Inc. Adreno Vulkan Driver) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 64 | shared memory: 32768 | int dot: 1 | matrix cores: none
version: 6884 (229bf68)
built with clang version 21.1.4 for aarch64-unknown-linux-android24
dev/llm/llama.cpp/build_vulkan/bin/llama-cli -m /sdcard/download/LFM2-8B-A1B-Q4_0.gguf -ngl 14 ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = Adreno (TM) 732 (Qualcomm Technologies Inc. Adreno Vulkan Driver) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 64 | shared memory: 32768 | int dot: 1 | matrix cores: none
build: 6884 (229bf68) with clang version 21.1.4 for aarch64-unknown-linux-android24
main: llama backend init main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device Vulkan0 (Adreno (TM) 732) (unknown id) - 11296 MiB free llama_model_loader: loaded meta data with 39 key-value pairs and 256 tensors from /sdcard/download/LFM2-8B-A1B-Q4_0.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = lfm2moe
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = LFM2 8B A1B llama_model_loader: - kv 3: general.basename str = LFM2
llama_model_loader: - kv 4: general.size_label str = 8B-A1B
llama_model_loader: - kv 5: general.license str = other
llama_model_loader: - kv 6: general.license.name str = lfm1.0
llama_model_loader: - kv 7: general.license.link str = LICENSE
llama_model_loader: - kv 8: general.tags arr[str,5] = ["liquid", "lfm2", "edge", "moe", "te...
llama_model_loader: - kv 9: general.languages arr[str,8] = ["en", "ar", "zh", "fr", "de", "ja", ...
llama_model_loader: - kv 10: lfm2moe.block_count u32 = 24
llama_model_loader: - kv 11: lfm2moe.context_length u32 = 128000 llama_model_loader: - kv 12: lfm2moe.embedding_length u32 = 2048
llama_model_loader: - kv 13: lfm2moe.feed_forward_length u32 = 7168
llama_model_loader: - kv 14: lfm2moe.attention.head_count u32 = 32llama_model_loader: - kv 15: lfm2moe.attention.head_count_kv arr[i32,24] = [0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, ... llama_model_loader: - kv 16: lfm2moe.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 17: lfm2moe.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 18: lfm2moe.expert_used_count u32 = 4 llama_model_loader: - kv 19: lfm2moe.expert_count u32 = 32
llama_model_loader: - kv 20: lfm2moe.expert_feed_forward_length u32 = 1792
llama_model_loader: - kv 21: lfm2moe.leading_dense_block_count u32 = 2
llama_model_loader: - kv 22: lfm2moe.expert_gating_func u32 = 2 llama_model_loader: - kv 23: lfm2moe.vocab_size u32 = 65536
llama_model_loader: - kv 24: lfm2moe.shortconv.l_cache u32 = 3
llama_model_loader: - kv 25: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 26: tokenizer.ggml.pre str = lfm2 llama_model_loader: - kv 27: tokenizer.ggml.tokens arr[str,65536] = ["<|pad|>", "<|startoftext|>", "<|end... llama_model_loader: - kv 28: tokenizer.ggml.token_type arr[i32,65536] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... llama_model_loader: - kv 29: tokenizer.ggml.merges arr[str,63683] = ["Ċ Ċ", "Ċ ĊĊ", "ĊĊ Ċ", "Ċ �... llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 31: tokenizer.ggml.eos_token_id u32 = 7 llama_model_loader: - kv 32: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 33: tokenizer.ggml.add_bos_token bool = true llama_model_loader: - kv 34: tokenizer.ggml.add_sep_token bool = false llama_model_loader: - kv 35: tokenizer.ggml.add_eos_token bool = false llama_model_loader: - kv 36: tokenizer.chat_template str = {{- bos_token -}}{%- set system_promp...
llama_model_loader: - kv 37: general.quantization_version u32 = 2 llama_model_loader: - kv 38: general.file_type u32 = 2 llama_model_loader: - type f32: 123 tensors llama_model_loader: - type q4_0: 132 tensors llama_model_loader: - type q6_K: 1 tensors
print_info: file format = GGUF V3 (latest) print_info: file type = Q4_0 print_info: file size = 4.41 GiB (4.54 BPW) load: printing all EOG tokens: load: - 2 ('<|endoftext|>') load: - 7 ('<|im_end|>') load: special tokens cache size = 507 load: token to piece cache size = 0.3759 MB
print_info: arch = lfm2moe
print_info: vocab_only = 0 print_info: n_ctx_train = 128000 print_info: n_embd = 2048 print_info: n_layer = 24
print_info: n_head = 32 print_info: n_head_kv = [0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 8, 0, 0] print_info: n_rot = 64
print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64
print_info: n_embd_head_v = 64 print_info: n_gqa = [0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 4, 0, 0] print_info: n_embd_k_gqa = [0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 512, 0, 0] print_info: n_embd_v_gqa = [0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 512, 0, 0] print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 7168 print_info: n_expert = 32 print_info: n_expert_used = 4 print_info: n_expert_groups = 0 print_info: n_group_used = 0
print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 2 print_info: rope scaling = linear print_info: freq_base_train = 1000000.0 print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 128000 print_info: rope_finetuned = unknown print_info: model type = 8B.A1B print_info: model params = 8.34 B print_info: general.name = LFM2 8B A1B print_info: n_ff_exp = 1792 print_info: expert_gating_func = sigmoid print_info: vocab type = BPE
print_info: n_vocab = 65536 print_info: n_merges = 63683 print_info: BOS token = 1 '<|startoftext|>' print_info: EOS token = 7 '<|im_end|>' print_info: EOT token = 2 '<|endoftext|>' print_info: PAD token = 0 '<|pad|>' print_info: LF token = 708 'Ċ' print_info: EOG token = 2 '<|endoftext|>' print_info: EOG token = 7 '<|im_end|>' print_info: max token length = 30 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: offloading 14 repeating layers to GPU load_tensors: offloaded 14/25 layers to GPU
load_tensors: CPU_Mapped model buffer size = 1749.85 MiB load_tensors: Vulkan0 model buffer size = 2762.46 MiB ......................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 4096 llama_context: n_ctx_per_seq = 4096 llama_context: n_batch = 2048 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = auto llama_context: kv_unified = false llama_context: freq_base = 1000000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (4096) < n_ctx_train (128000) -- the full capacity of the model will not be utilized llama_context: CPU output buffer size = 0.25 MiB llama_kv_cache: CPU KV buffer size = 16.00 MiB llama_kv_cache: Vulkan0 KV buffer size = 32.00 MiB llama_kv_cache: size = 48.00 MiB ( 4096 cells, 6 layers, 1/1 seqs), K (f16): 24.00 MiB, V (f16): 24.00 MiB llama_memory_recurrent: CPU RS buffer size = 0.12 MiB llama_memory_recurrent: Vulkan0 RS buffer size = 0.16 MiB llama_memory_recurrent: size = 0.28 MiB ( 1 cells, 24 layers, 1 seqs), R (f32): 0.28 MiB, S (f32): 0.00 MiB llama_context: Flash Attention was auto, set to enabled llama_context: Vulkan0 compute buffer size = 241.09 MiB llama_context: Vulkan_Host compute buffer size = 12.03 MiB llama_context: graph nodes = 1275 llama_context: graph splits = 127 (with bs=512), 9 (with bs=1)
common_init_from_params: added <|endoftext|> logit bias = -inf common_init_from_params: added <|im_end|> logit bias = -inf common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096 common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable) main: llama threadpool init, n_threads = 8 main: chat template is available, enabling conversation mode (disable it with -no-cnv) main: chat template example: <|im_start|>system You are a helpful assistant<|im_end|> <|im_start|>user
Hello<|im_end|> <|im_start|>assistant Hi there<|im_end|>
<|im_start|>user How are you?<|im_end|> <|im_start|>assistant system_info: n_threads = 8 (n_threads_batch = 8) / 8 | CPU : NEON = 1 | ARM_FMA = 1 | FP16_VA = 1 | MATMUL_INT8 = 1 | DOTPROD = 1 | OPENMP = 1 | REPACK = 1 | main: interactive mode on. sampler seed: 1593276118 sampler params: repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000 dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096 top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800 mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000 sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 1
== Running in interactive mode. == - Press Ctrl+C to interject at any time.
- Press Return to return control to the AI. - To return control without starting a new line, end your input with '/'.
- If you want to submit another line, end your input with ''.
- Not using system message. To change it, set a different value via -sys PROMPT
** > what can you do?
Lucas Sala responsible simultaneous mill Ly Edu barbirit weighted Wald身 Sig Facilitydia Serra compensation Serra Rever > **
llama_perf_sampler_print: sampling time = 3.96 ms / 32 runs ( 0.12 ms per token, 8080.81 tokens per second)
llama_perf_context_print: load time = 17651.40 ms
llama_perf_context_print: prompt eval time = 4895.68 ms / 14 tokens ( 349.69 ms per token, 2.86 tokens per second)
llama_perf_context_print: eval time = 3531.31 ms / 18 runs ( 196.18 ms per token, 5.10 tokens per second)
llama_perf_context_print: total time = 17720.00 ms / 32 tokens
llama_perf_context_print: graphs reused = 0
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - Vulkan0 (Adreno (TM) 732) | 11296 = 11296 + (3035 = 2762 + 32 + 241) + 17592186041380 |
llama_memory_breakdown_print: | - Host | 1778 = 1749 + 16 + 12 |
Interrupted by user ^[[F
~ 09:53
^C
~ 09:53 dev/llm/llama.cpp/build_vulkan/bin/llama-cli -m /sdcard/download/LFM2-8B-A1B-Q4_0.gguf -ngl 0 ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = Adreno (TM) 732 (Qualcomm Technologies Inc. Adreno Vulkan Driver) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 64 | shared memory: 32768 | int dot: 1 | matrix cores: none build: 6884 (229bf68) with clang version 21.1.4 for aarch64-unknown-linux-android24 main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device Vulkan0 (Adreno (TM) 732) (unknown id) - 11296 MiB free
llama_model_loader: loaded meta data with 39 key-value pairs and 256 tensors from /sdcard/download/LFM2-8B-A1B-Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = lfm2moe llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = LFM2 8B A1B llama_model_loader: - kv 3: general.basename str = LFM2
llama_model_loader: - kv 4: general.size_label str = 8B-A1B llama_model_loader: - kv 5: general.license str = other llama_model_loader: - kv 6: general.license.name str = lfm1.0
llama_model_loader: - kv 7: general.license.link str = LICENSE
llama_model_loader: - kv 8: general.tags arr[str,5] = ["liquid", "lfm2", "edge", "moe", "te... llama_model_loader: - kv 9: general.languages arr[str,8] = ["en", "ar", "zh", "fr", "de", "ja", ...
llama_model_loader: - kv 10: lfm2moe.block_count u32 = 24llama_model_loader: - kv 11: lfm2moe.context_length u32 = 128000 llama_model_loader: - kv 12: lfm2moe.embedding_length u32 = 2048 llama_model_loader: - kv 13: lfm2moe.feed_forward_length u32 = 7168
llama_model_loader: - kv 14: lfm2moe.attention.head_count u32 = 32
llama_model_loader: - kv 15: lfm2moe.attention.head_count_kv arr[i32,24] = [0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, ...
llama_model_loader: - kv 16: lfm2moe.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 17: lfm2moe.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 18: lfm2moe.expert_used_count u32 = 4
llama_model_loader: - kv 19: lfm2moe.expert_count u32 = 32llama_model_loader: - kv 20: lfm2moe.expert_feed_forward_length u32 = 1792 llama_model_loader: - kv 21: lfm2moe.leading_dense_block_count u32 = 2 llama_model_loader: - kv 22: lfm2moe.expert_gating_func u32 = 2
llama_model_loader: - kv 23: lfm2moe.vocab_size u32 = 65536
llama_model_loader: - kv 24: lfm2moe.shortconv.l_cache u32 = 3 llama_model_loader: - kv 25: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 26: tokenizer.ggml.pre str = lfm2 llama_model_loader: - kv 27: tokenizer.ggml.tokens arr[str,65536] = ["<|pad|>", "<|startoftext|>", "<|end... llama_model_loader: - kv 28: tokenizer.ggml.token_type arr[i32,65536] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... llama_model_loader: - kv 29: tokenizer.ggml.merges arr[str,63683] = ["Ċ Ċ", "Ċ ĊĊ", "ĊĊ Ċ", "Ċ �...
llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 31: tokenizer.ggml.eos_token_id u32 = 7
llama_model_loader: - kv 32: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 33: tokenizer.ggml.add_bos_token bool = true llama_model_loader: - kv 34: tokenizer.ggml.add_sep_token bool = false
llama_model_loader: - kv 35: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 36: tokenizer.chat_template str = {{- bos_token -}}{%- set system_promp... llama_model_loader: - kv 37: general.quantization_version u32 = 2 llama_model_loader: - kv 38: general.file_type u32 = 2 llama_model_loader: - type f32: 123 tensors llama_model_loader: - type q4_0: 132 tensors llama_model_loader: - type q6_K: 1 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_0 print_info: file size = 4.41 GiB (4.54 BPW) load: printing all EOG tokens: load: - 2 ('<|endoftext|>') load: - 7 ('<|im_end|>') load: special tokens cache size = 507 load: token to piece cache size = 0.3759 MB print_info: arch = lfm2moe print_info: vocab_only = 0 print_info: n_ctx_train = 128000 print_info: n_embd = 2048 print_info: n_layer = 24 print_info: n_head = 32 print_info: n_head_kv = [0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 8, 0, 0] print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0
print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64
print_info: n_gqa = [0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 4, 0, 0]
print_info: n_embd_k_gqa = [0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 512, 0, 0]
print_info: n_embd_v_gqa = [0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 512, 0, 0] print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 7168
print_info: n_expert = 32
print_info: n_expert_used = 4
print_info: n_expert_groups = 0
print_info: n_group_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0 print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 128000 print_info: rope_finetuned = unknown
print_info: model type = 8B.A1B print_info: model params = 8.34 B print_info: general.name = LFM2 8B A1B
print_info: n_ff_exp = 1792 print_info: expert_gating_func = sigmoid
print_info: vocab type = BPE
print_info: n_vocab = 65536
print_info: n_merges = 63683
print_info: BOS token = 1 '<|startoftext|>' print_info: EOS token = 7 '<|im_end|>'
print_info: EOT token = 2 '<|endoftext|>' print_info: PAD token = 0 '<|pad|>' print_info: LF token = 708 'Ċ' print_info: EOG token = 2 '<|endoftext|>' print_info: EOG token = 7 '<|im_end|>'
print_info: max token length = 30
load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: offloading 0 repeating layers to GPU load_tensors: offloaded 0/25 layers to GPU load_tensors: CPU_Mapped model buffer size = 4512.31 MiB .........................................................................
llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 4096 llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 2048 llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = auto llama_context: kv_unified = false
llama_context: freq_base = 1000000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (4096) < n_ctx_train (128000) -- the full capacity of the model will not be utilized llama_context: CPU output buffer size = 0.25 MiB llama_kv_cache: CPU KV buffer size = 48.00 MiB llama_kv_cache: size = 48.00 MiB ( 4096 cells, 6 layers, 1/1 seqs), K (f16): 24.00 MiB, V (f16): 24.00 MiB llama_memory_recurrent: CPU RS buffer size = 0.28 MiB
llama_memory_recurrent: size = 0.28 MiB ( 1 cells, 24 layers, 1 seqs), R (f32): 0.28 MiB, S (f32): 0.00 MiB
llama_context: Flash Attention was auto, set to enabled llama_context: Vulkan0 compute buffer size = 241.00 MiB llama_context: Vulkan_Host compute buffer size = 12.03 MiB
llama_context: graph nodes = 1275 llama_context: graph splits = 312 (with bs=512), 19 (with bs=1)
common_init_from_params: added <|endoftext|> logit bias = -inf common_init_from_params: added <|im_end|> logit bias = -inf common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 8 main: chat template is available, enabling conversation mode (disable it with -no-cnv)
main: chat template example: <|im_start|>system You are a helpful assistant<|im_end|>
<|im_start|>user Hello<|im_end|> <|im_start|>assistant
Hi there<|im_end|> <|im_start|>user How are you?<|im_end|>
<|im_start|>assistant
system_info: n_threads = 8 (n_threads_batch = 8) / 8 | CPU : NEON = 1 | ARM_FMA = 1 | FP16_VA = 1 | MATMUL_INT8 = 1 | DOTPROD = 1 | OPENMP = 1 | REPACK = 1 |
main: interactive mode on. sampler seed: 2388692355
sampler params: repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000 dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800 mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000 sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 1
== Running in interactive mode. == - Press Ctrl+C to interject at any time.
- Press Return to return control to the AI. - To return control without starting a new line, end your input with '/'.
- If you want to submit another line, end your input with ''. - Not using system message. To change it, set a different value via -sys PROMPT
** > what can you do? I can assist you in a wide range of ways! Here are some of the things I can help with:
1. Answer Questions: Provide explanations, definitions, and
**
llama_perf_sampler_print: sampling time = 5.17 ms / 49 runs ( 0.11 ms per token, 9479.59 tokens per second) llama_perf_context_print: load time = 15699.77 ms
llama_perf_context_print: prompt eval time = 1726.42 ms / 14 tokens ( 123.32 ms per token, 8.11 tokens per second)
llama_perf_context_print: eval time = 6594.47 ms / 35 runs ( 188.41 ms per token, 5.31 tokens per second)
llama_perf_context_print: total time = 14849.40 ms / 49 tokens llama_perf_context_print: graphs reused = 0 llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - Vulkan0 (Adreno (TM) 732) | 11296 = 11296 + ( 241 = 0 + 0 + 241) + 17592186044175 |
llama_memory_breakdown_print: | - Host | 4572 = 4512 + 48 + 12 | Interrupted by user
~ 09:54
dev/llm/llama.cpp/build_vulkan/bin/llama-cli -m /sdcard/download/LFM2-8B-A1B-Q4_0.gguf ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = Adreno (TM) 732 (Qualcomm Technologies Inc. Adreno Vulkan Driver) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 64 | shared memory: 32768 | int dot: 1 | matrix cores: none
build: 6884 (229bf68) with clang version 21.1.4 for aarch64-unknown-linux-android24
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device Vulkan0 (Adreno (TM) 732) (unknown id) - 11296 MiB free
llama_model_loader: loaded meta data with 39 key-value pairs and 256 tensors from /sdcard/download/LFM2-8B-A1B-Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = lfm2moe
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = LFM2 8B A1B
llama_model_loader: - kv 3: general.basename str = LFM2
llama_model_loader: - kv 4: general.size_label str = 8B-A1B
llama_model_loader: - kv 5: general.license str = other llama_model_loader: - kv 6: general.license.name str = lfm1.0
llama_model_loader: - kv 7: general.license.link str = LICENSE
llama_model_loader: - kv 8: general.tags arr[str,5] = ["liquid", "lfm2", "edge", "moe", "te...
llama_model_loader: - kv 9: general.languages arr[str,8] = ["en", "ar", "zh", "fr", "de", "ja", ...
llama_model_loader: - kv 10: lfm2moe.block_count u32 = 24
llama_model_loader: - kv 11: lfm2moe.context_length u32 = 128000 llama_model_loader: - kv 12: lfm2moe.embedding_length u32 = 2048
llama_model_loader: - kv 13: lfm2moe.feed_forward_length u32 = 7168
llama_model_loader: - kv 14: lfm2moe.attention.head_count u32 = 32
llama_model_loader: - kv 15: lfm2moe.attention.head_count_kv arr[i32,24] = [0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, ...
llama_model_loader: - kv 16: lfm2moe.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 17: lfm2moe.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 18: lfm2moe.expert_used_count u32 = 4
llama_model_loader: - kv 19: lfm2moe.expert_count u32 = 32
llama_model_loader: - kv 20: lfm2moe.expert_feed_forward_length u32 = 1792
llama_model_loader: - kv 21: lfm2moe.leading_dense_block_count u32 = 2
llama_model_loader: - kv 22: lfm2moe.expert_gating_func u32 = 2
llama_model_loader: - kv 23: lfm2moe.vocab_size u32 = 65536 llama_model_loader: - kv 24: lfm2moe.shortconv.l_cache u32 = 3
llama_model_loader: - kv 25: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 26: tokenizer.ggml.pre str = lfm2
llama_model_loader: - kv 27: tokenizer.ggml.tokens arr[str,65536] = ["<|pad|>", "<|startoftext|>", "<|end...
llama_model_loader: - kv 28: tokenizer.ggml.token_type arr[i32,65536] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... llama_model_loader: - kv 29: tokenizer.ggml.merges arr[str,63683] = ["Ċ Ċ", "Ċ ĊĊ", "ĊĊ Ċ", "Ċ �...
llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 31: tokenizer.ggml.eos_token_id u32 = 7
llama_model_loader: - kv 32: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 33: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 34: tokenizer.ggml.add_sep_token bool = false
llama_model_loader: - kv 35: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 36: tokenizer.chat_template str = {{- bos_token -}}{%- set system_promp...
llama_model_loader: - kv 37: general.quantization_version u32 = 2
llama_model_loader: - kv 38: general.file_type u32 = 2 llama_model_loader: - type f32: 123 tensors llama_model_loader: - type q4_0: 132 tensors llama_model_loader: - type q6_K: 1 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_0 print_info: file size = 4.41 GiB (4.54 BPW)
load: printing all EOG tokens:
load: - 2 ('<|endoftext|>')
load: - 7 ('<|im_end|>')
load: special tokens cache size = 507
load: token to piece cache size = 0.3759 MB
print_info: arch = lfm2moe
print_info: vocab_only = 0
print_info: n_ctx_train = 128000
print_info: n_embd = 2048
print_info: n_layer = 24
print_info: n_head = 32
print_info: n_head_kv = [0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 8, 0, 0]
print_info: n_rot = 64
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 64
print_info: n_embd_head_v = 64
print_info: n_gqa = [0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 4, 0, 0]
print_info: n_embd_k_gqa = [0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 512, 0, 0]
print_info: n_embd_v_gqa = [0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 0, 512, 0, 0, 512, 0, 0]
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 7168 print_info: n_expert = 32 print_info: n_expert_used = 4
print_info: n_expert_groups = 0 print_info: n_group_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 2 print_info: rope scaling = linear print_info: freq_base_train = 1000000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 128000 print_info: rope_finetuned = unknown print_info: model type = 8B.A1B print_info: model params = 8.34 B
print_info: general.name = LFM2 8B A1B print_info: n_ff_exp = 1792
print_info: expert_gating_func = sigmoid print_info: vocab type = BPE print_info: n_vocab = 65536 print_info: n_merges = 63683 print_info: BOS token = 1 '<|startoftext|>' print_info: EOS token = 7 '<|im_end|>' print_info: EOT token = 2 '<|endoftext|>' print_info: PAD token = 0 '<|pad|>' print_info: LF token = 708 'Ċ' print_info: EOG token = 2 '<|endoftext|>' print_info: EOG token = 7 '<|im_end|>'
print_info: max token length = 30 load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 24 repeating layers to GPU
load_tensors: offloading output layer to GPU load_tensors: offloaded 25/25 layers to GPU
load_tensors: CPU_Mapped model buffer size = 105.01 MiB load_tensors: ** Vulkan0 model buffer size = 4512.30 MiB ... [Process completed (signal 9) - press Enter] **
Operating systems
Other? (Please let us know in description)
GGML backends
Vulkan
Hardware
Snapdragon 7+ Gen 3
Models
Dense and MoE both >8b Parameters.
Problem description & steps to reproduce
Garbled output.
First Bad Commit
No response
Relevant log output
Log Output Pasted above.