-
Notifications
You must be signed in to change notification settings - Fork 13.7k
Closed
Labels
Description
Name and Version
./llama-server --version
ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = AMD Radeon RX 7900 XTX (RADV NAVI31) (radv) | uma: 0 | fp16: 1 | bf16: 0 | warp size: 64 | shared memory: 65536 | int dot: 1 | matrix cores: KHR_coopmat
load_backend: loaded Vulkan backend from /app/libggml-vulkan.so
load_backend: loaded CPU backend from /app/libggml-cpu-haswell.so
version: 6894 (6eb208d17)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
Operating systems
Linux
GGML backends
Vulkan
Hardware
AMD Radeon RX 7900 XTX 24GB
Models
Qwen3-VL-30B-A3B-Instruct-GGUF
and
Qwen3-VL-30B-A3B-Thinking-GGUF
Problem description & steps to reproduce
When I use:
./llama_server
--model /models/Qwen3-VL-30B-A3B-Instruct-Q4_K_M.gguf
--host 0.0.0.0
--ctx-size 32768 # or lower
--batch-size 2048
--ubatch-size 2048
--jinja
-np 2
-ngl 999
--mmproj /models/mmproj-Qwen3-VL-30B-A3B-Instruct-Q4_K_M.gguf
In meanwhile I do request via open webui to llama and I run nvtop
I got this:
I cannot force qwen3-vl to utilizie 100% gpu -> max 80%.
It doesn't matter if I include image or not.
The same thing is in a thinking version.
This problem doesn't exist in Qwen3-30B-A3B-Instruct-Q4_K_M or in thinking version.
Comparing Qwen3 to Qwen3-vl the performance is much worse ( ≈160 to ≈100 ).
What can I do in such situation?
First Bad Commit
No response
Relevant log output
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - Vulkan0 (RX 7900 XTX (RADV NAVI31)) | 24560 = 2389 + (22119 = 17524 + 3072 + 1523) + 51 |
llama_memory_breakdown_print: | - Host | 310 = 166 + 0 + 144 |
load_backend: loaded RPC backend from /app/build/bin/libggml-rpc.so
ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = AMD Radeon RX 7900 XTX (RADV NAVI31) (radv) | uma: 0 | fp16: 1 | bf16: 0 | warp size: 64 | shared memory: 65536 | int dot: 1 | matrix cores: KHR_coopmat
load_backend: loaded Vulkan backend from /app/build/bin/libggml-vulkan.so
load_backend: loaded CPU backend from /app/build/bin/libggml-cpu-haswell.so
warn: LLAMA_ARG_HOST environment variable is set, but will be overwritten by command line argument --host
build: 6898 (d2d931f17) with cc (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0 for x86_64-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 16
system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: 0.0.0.0, port: 5809, http threads: 15
main: loading model
srv load_model: loading model '/models/Qwen3-VL-30B-A3B-Instruct-Q4_K_M.gguf'
llama_model_load_from_file_impl: using device Vulkan0 (AMD Radeon RX 7900 XTX (RADV NAVI31)) (0000:10:00.0) - 20214 MiB free
llama_model_loader: loaded meta data with 45 key-value pairs and 579 tensors from /models/Qwen3-VL-30B-A3B-Instruct-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3vlmoe
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen3-Vl-30B-A3B-Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Qwen3-Vl-30B-A3B-Instruct
llama_model_loader: - kv 5: general.quantized_by str = Unsloth
llama_model_loader: - kv 6: general.size_label str = 30B-A3B
llama_model_loader: - kv 7: general.license str = apache-2.0
llama_model_loader: - kv 8: general.repo_url str = https://huggingface.co/unsloth
llama_model_loader: - kv 9: general.base_model.count u32 = 1
llama_model_loader: - kv 10: general.base_model.0.name str = Qwen3 VL 30B A3B Instruct
llama_model_loader: - kv 11: general.base_model.0.organization str = Qwen
llama_model_loader: - kv 12: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen3-VL-...
llama_model_loader: - kv 13: general.tags arr[str,2] = ["unsloth", "image-text-to-text"]
llama_model_loader: - kv 14: qwen3vlmoe.block_count u32 = 48
llama_model_loader: - kv 15: qwen3vlmoe.context_length u32 = 262144
llama_model_loader: - kv 16: qwen3vlmoe.embedding_length u32 = 2048
llama_model_loader: - kv 17: qwen3vlmoe.feed_forward_length u32 = 6144
llama_model_loader: - kv 18: qwen3vlmoe.attention.head_count u32 = 32
llama_model_loader: - kv 19: qwen3vlmoe.attention.head_count_kv u32 = 4
llama_model_loader: - kv 20: qwen3vlmoe.rope.freq_base f32 = 5000000.000000
llama_model_loader: - kv 21: qwen3vlmoe.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 22: qwen3vlmoe.expert_used_count u32 = 8
llama_model_loader: - kv 23: qwen3vlmoe.attention.key_length u32 = 128
llama_model_loader: - kv 24: qwen3vlmoe.attention.value_length u32 = 128
llama_model_loader: - kv 25: qwen3vlmoe.expert_count u32 = 128
llama_model_loader: - kv 26: qwen3vlmoe.expert_feed_forward_length u32 = 768
llama_model_loader: - kv 27: qwen3vlmoe.rope.dimension_sections arr[i32,4] = [24, 20, 20, 0]
llama_model_loader: - kv 28: qwen3vlmoe.n_deepstack_layers u32 = 3
llama_model_loader: - kv 29: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 30: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 31: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 32: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 33: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 34: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 35: tokenizer.ggml.padding_token_id u32 = 151654
llama_model_loader: - kv 36: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 37: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 38: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 39: general.quantization_version u32 = 2
llama_model_loader: - kv 40: general.file_type u32 = 15
llama_model_loader: - kv 41: quantize.imatrix.file str = Qwen3-VL-30B-A3B-Instruct-GGUF/imatri...
llama_model_loader: - kv 42: quantize.imatrix.dataset str = unsloth_calibration_Qwen3-VL-30B-A3B-...
llama_model_loader: - kv 43: quantize.imatrix.entries_count u32 = 384
llama_model_loader: - kv 44: quantize.imatrix.chunks_count u32 = 694
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q4_K: 289 tensors
llama_model_loader: - type q6_K: 49 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 17.28 GiB (4.86 BPW)
load: printing all EOG tokens:
load: - 151643 ('<|endoftext|>')
load: - 151645 ('<|im_end|>')
load: - 151662 ('<|fim_pad|>')
load: - 151663 ('<|repo_name|>')
load: - 151664 ('<|file_sep|>')
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch = qwen3vlmoe
print_info: vocab_only = 0
print_info: n_ctx_train = 262144
print_info: n_embd = 8192
print_info: n_layer = 48
print_info: n_head = 32
print_info: n_head_kv = 4
print_info: n_rot = 128
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 8
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 6144
print_info: n_expert = 128
print_info: n_expert_used = 8
print_info: n_expert_groups = 0
print_info: n_group_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 40
print_info: rope scaling = linear
print_info: freq_base_train = 5000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 262144
print_info: rope_finetuned = unknown
print_info: mrope sections = [24, 20, 20, 0]
print_info: model type = 30B.A3B
print_info: model params = 30.53 B
print_info: general.name = Qwen3-Vl-30B-A3B-Instruct
print_info: n_ff_exp = 768
print_info: vocab type = BPE
print_info: n_vocab = 151936
print_info: n_merges = 151387
print_info: BOS token = 151643 '<|endoftext|>'
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151654 '<|vision_pad|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
srv log_server_r: request: GET /health 127.0.0.1 503
[INFO] Request ::1 "GET / HTTP/1.1" 302 26 "curl/8.5.0" 23.681µs
srv log_server_r: request: GET /health 127.0.0.1 503
srv log_server_r: request: GET /health 127.0.0.1 503
srv log_server_r: request: GET /health 127.0.0.1 503
srv log_server_r: request: GET /health 127.0.0.1 503
load_tensors: offloading 48 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 49/49 layers to GPU
load_tensors: CPU_Mapped model buffer size = 166.92 MiB
load_tensors: Vulkan0 model buffer size = 17524.42 MiB
...............srv log_server_r: request: GET /health 127.0.0.1 503
....................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 2
llama_context: n_ctx = 32768
llama_context: n_ctx_per_seq = 16384
llama_context: n_batch = 2048
llama_context: n_ubatch = 2048
llama_context: causal_attn = 1
llama_context: flash_attn = auto
llama_context: kv_unified = false
llama_context: freq_base = 5000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (16384) < n_ctx_train (262144) -- the full capacity of the model will not be utilized
llama_context: Vulkan_Host output buffer size = 1.16 MiB
llama_kv_cache: Vulkan0 KV buffer size = 3072.00 MiB
llama_kv_cache: size = 3072.00 MiB ( 16384 cells, 48 layers, 2/2 seqs), K (f16): 1536.00 MiB, V (f16): 1536.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context: Vulkan0 compute buffer size = 1523.07 MiB
llama_context: Vulkan_Host compute buffer size = 144.08 MiB
llama_context: graph nodes = 3127
llama_context: graph splits = 2
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 32768
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv log_server_r: request: GET /health 127.0.0.1 503
clip_model_loader: model name: Qwen3-Vl-30B-A3B-Instruct
clip_model_loader: description:
clip_model_loader: GGUF version: 3
clip_model_loader: alignment: 32
clip_model_loader: n_tensors: 352
clip_model_loader: n_kv: 31
clip_model_loader: has vision encoder
clip_ctx: CLIP using Vulkan0 backend
load_hparams: projector: qwen3vl_merger
load_hparams: n_embd: 1152
load_hparams: n_head: 16
load_hparams: n_ff: 4304
load_hparams: n_layer: 27
load_hparams: ffn_op: gelu
load_hparams: projection_dim: 2048
--- vision hparams ---
load_hparams: image_size: 1024
load_hparams: patch_size: 16
load_hparams: has_llava_proj: 0
load_hparams: minicpmv_version: 0
load_hparams: proj_scale_factor: 0
load_hparams: n_wa_pattern: 0
load_hparams: spatial_merge_size: 2
load_hparams: model size: 1033.29 MiB
load_hparams: metadata size: 0.12 MiB
alloc_compute_meta: Vulkan0 compute buffer size = 3.00 MiB
alloc_compute_meta: CPU compute buffer size = 0.19 MiB
srv load_model: loaded multimodal model, '/models/mmproj-Qwen3-VL-30B-A3B-Instruct-Q4_K_M.gguf'
srv init: initializing slots, n_slots = 2
slot init: id 0 | task -1 | new slot n_ctx_slot = 16384
slot init: id 1 | task -1 | new slot n_ctx_slot = 16384
srv init: prompt cache is enabled, size limit: 8192 MiB
srv init: use `--cache-ram 0` to disable the prompt cache
srv init: for more info see https://github.com/ggml-org/llama.cpp/pull/16391
srv init: thinking = 0
main: model loaded
main: chat template, chat_template: {%- if tools %}
{{- '<|im_start|>system\n' }}
{%- if messages[0].role == 'system' %}
{%- if messages[0].content is string %}
{{- messages[0].content }}
{%- else %}
{%- for content in messages[0].content %}
{%- if 'text' in content %}
{{- content.text }}
{%- endif %}
{%- endfor %}
{%- endif %}
{{- '\n\n' }}
{%- endif %}
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
{%- for tool in tools %}
{{- "\n" }}
{{- tool | tojson }}
{%- endfor %}
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
{%- if messages[0].role == 'system' %}
{{- '<|im_start|>system\n' }}
{%- if messages[0].content is string %}
{{- messages[0].content }}
{%- else %}
{%- for content in messages[0].content %}
{%- if 'text' in content %}
{{- content.text }}
{%- endif %}
{%- endfor %}
{%- endif %}
{{- '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- set image_count = namespace(value=0) %}
{%- set video_count = namespace(value=0) %}
{%- for message in messages %}
{%- if message.role == "user" %}
{{- '<|im_start|>' + message.role + '\n' }}
{%- if message.content is string %}
{{- message.content }}
{%- else %}
{%- for content in message.content %}
{%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
{%- set image_count.value = image_count.value + 1 %}
{%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
<|vision_start|><|image_pad|><|vision_end|>
{%- elif content.type == 'video' or 'video' in content %}
{%- set video_count.value = video_count.value + 1 %}
{%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
<|vision_start|><|video_pad|><|vision_end|>
{%- elif 'text' in content %}
{{- content.text }}
{%- endif %}
{%- endfor %}
{%- endif %}
{{- '<|im_end|>\n' }}
{%- elif message.role == "assistant" %}
{{- '<|im_start|>' + message.role + '\n' }}
{%- if message.content is string %}
{{- message.content }}
{%- else %}
{%- for content_item in message.content %}
{%- if 'text' in content_item %}
{{- content_item.text }}
{%- endif %}
{%- endfor %}
{%- endif %}
{%- if message.tool_calls %}
{%- for tool_call in message.tool_calls %}
{%- if (loop.first and message.content) or (not loop.first) %}
{{- '\n' }}
{%- endif %}
{%- if tool_call.function %}
{%- set tool_call = tool_call.function %}
{%- endif %}
{{- '<tool_call>\n{"name": "' }}
{{- tool_call.name }}
{{- '", "arguments": ' }}
{%- if tool_call.arguments is string %}
{{- tool_call.arguments }}
{%- else %}
{{- tool_call.arguments | tojson }}
{%- endif %}
{{- '}\n</tool_call>' }}
{%- endfor %}
{%- endif %}
{{- '<|im_end|>\n' }}
{%- elif message.role == "tool" %}
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
{{- '<|im_start|>user' }}
{%- endif %}
{{- '\n<tool_response>\n' }}
{%- if message.content is string %}
{{- message.content }}
{%- else %}
{%- for content in message.content %}
{%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
{%- set image_count.value = image_count.value + 1 %}
{%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
<|vision_start|><|image_pad|><|vision_end|>
{%- elif content.type == 'video' or 'video' in content %}
{%- set video_count.value = video_count.value + 1 %}
{%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
<|vision_start|><|video_pad|><|vision_end|>
{%- elif 'text' in content %}
{{- content.text }}
{%- endif %}
{%- endfor %}
{%- endif %}
{{- '\n</tool_response>' }}
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
{{- '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|im_start|>assistant\n' }}
{%- endif %}
, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://0.0.0.0:5809 - starting the main loop
srv update_slots: all slots are idle
[INFO] Request ::1 "GET / HTTP/1.1" 302 26 "curl/8.5.0" 27.551µs
[INFO] <qwen3-vl-30b-instruct> Health check passed on http://localhost:5809/health
srv log_server_r: request: GET /health 127.0.0.1 200
srv params_from_: Chat format: Hermes 2 Pro
slot get_availabl: id 1 | task -1 | selected slot by LRU, t_last = -1
slot launch_slot_: id 1 | task 0 | processing task
slot update_slots: id 1 | task 0 | new prompt, n_ctx_slot = 16384, n_keep = 0, task.n_tokens = 726
slot update_slots: id 1 | task 0 | n_tokens = 0, memory_seq_rm [0, end)
slot update_slots: id 1 | task 0 | prompt processing progress, n_tokens = 16, batch.n_tokens = 16, progress = 0.022039
slot update_slots: id 1 | task 0 | n_tokens = 16, memory_seq_rm [16, end)
srv process_chun: processing image...
srv process_chun: image processed in 864 ms
slot update_slots: id 1 | task 0 | prompt processing progress, n_tokens = 726, batch.n_tokens = 6, progress = 1.000000
slot update_slots: id 1 | task 0 | prompt done, n_tokens = 726, batch.n_tokens = 6
slot print_timing: id 1 | task 0 |
prompt eval time = 992.26 ms / 726 tokens ( 1.37 ms per token, 731.66 tokens per second)
eval time = 3889.78 ms / 398 tokens ( 9.77 ms per token, 102.32 tokens per second)
total time = 4882.04 ms / 1124 tokens
slot release: id 1 | task 0 | stop processing: n_tokens = 1123, truncated = 0
srv update_slots: all slots are idle
srv log_server_r: request: POST /v1/chat/completions 127.0.0.1 200
[INFO] Request 172.20.0.1 "POST /v1/chat/completions HTTP/1.1" 200 101650 "Python/3.11 aiohttp/3.12.15" 40.454859888s
[INFO] Request 172.20.0.1 "GET /v1/models HTTP/1.1" 200 3428 "Python/3.11 aiohttp/3.12.15" 106.522µs
srv params_from_: Chat format: Hermes 2 Pro
slot get_availabl: id 0 | task -1 | selected slot by LRU, t_last = -1
slot launch_slot_: id 0 | task 400 | processing task
slot update_slots: id 0 | task 400 | new prompt, n_ctx_slot = 16384, n_keep = 0, task.n_tokens = 623
slot update_slots: id 0 | task 400 | n_tokens = 0, memory_seq_rm [0, end)
slot update_slots: id 0 | task 400 | prompt processing progress, n_tokens = 623, batch.n_tokens = 623, progress = 1.000000
slot update_slots: id 0 | task 400 | prompt done, n_tokens = 623, batch.n_tokens = 623
slot print_timing: id 0 | task 400 |
prompt eval time = 423.31 ms / 623 tokens ( 0.68 ms per token, 1471.75 tokens per second)
eval time = 816.42 ms / 95 tokens ( 8.59 ms per token, 116.36 tokens per second)
total time = 1239.72 ms / 718 tokens
slot release: id 0 | task 400 | stop processing: n_tokens = 717, truncated = 0
srv update_slots: all slots are idle
srv log_server_r: request: POST /v1/chat/completions 127.0.0.1 200
[INFO] Request 172.20.0.1 "POST /v1/chat/completions HTTP/1.1" 200 889 "Python/3.11 aiohttp/3.12.15" 1.24430083s
[INFO] Request 172.20.0.1 "GET /v1/models HTTP/1.1" 200 3428 "Python/3.11 aiohttp/3.12.15" 121.062µs
srv params_from_: Chat format: Hermes 2 Pro
slot get_availabl: id 1 | task -1 | selected slot by LRU, t_last = 485549729955
slot launch_slot_: id 1 | task 496 | processing task
slot update_slots: id 1 | task 496 | new prompt, n_ctx_slot = 16384, n_keep = 0, task.n_tokens = 693
slot update_slots: id 1 | task 496 | old: ... <|im_start|>user
| Read all details from the receipt
slot update_slots: id 1 | task 496 | new: ... <|im_start|>user