-
Notifications
You must be signed in to change notification settings - Fork 13.8k
Closed
Labels
Description
Name and Version
b7044
Operating systems
Windows
GGML backends
CUDA
Hardware
RTX 4090, RTX 5090
Models
Gemma 3n 2B - https://huggingface.co/ggml-org/gemma-3n-E2B-it-GGUF
Gemma 3n 4B - https://huggingface.co/ggml-org/gemma-3n-E4B-it-GGUF
Problem description & steps to reproduce
- Prepare Windows 11 system with Nvidia RTX 4090 or RTX 5090 gpu.
- Install Nvidia gpu driver.
- Install llama.cpp release b7044 or higher.
- Execute this command -
C:\Windows\System32>"D:\Apps\WinAI\LlamaCppBuilds\b7044\llama-server.exe" -m "D:\Apps\dxgperf_appsdata\dxml_models\ModelOpt\llm\gemma_3n_2b\int8_llamacpp_gguf\gemma-3n-E2B-it-Q8_0.gguf" -fa on -c 1000 --port 8000
llama-server will crash.
Llama-bench is also crashing.
First Bad Commit
b7044
Relevant log output
C:\Windows\System32>"D:\Apps\WinAI\LlamaCppBuilds\b7044\llama-server.exe" -m "D:\Apps\dxgperf_appsdata\dxml_models\ModelOpt\llm\gemma_3n_2b\int8_llamacpp_gguf\gemma-3n-E2B-it-Q8_0.gguf" -fa on -c 1000 --port 8000
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 5090, compute capability 12.0, VMM: yes
load_backend: loaded CUDA backend from D:\Apps\WinAI\LlamaCppBuilds\b7044\ggml-cuda.dll
load_backend: loaded RPC backend from D:\Apps\WinAI\LlamaCppBuilds\b7044\ggml-rpc.dll
load_backend: loaded CPU backend from D:\Apps\WinAI\LlamaCppBuilds\b7044\ggml-cpu-icelake.dll
main: setting n_parallel = 4 and kv_unified = true (add -kvu to disable this)
?[0mbuild: 7044 (a90eb94ca) with clang version 19.1.5 for x86_64-pc-windows-msvc
system info: n_threads = 8, n_threads_batch = 8, total_threads = 16
system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CUDA : ARCHS = 500,610,700,750,800,860,890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8000, http threads: 15
main: loading model
srv load_model: loading model 'D:\Apps\dxgperf_appsdata\dxml_models\ModelOpt\llm\gemma_3n_2b\int8_llamacpp_gguf\gemma-3n-E2B-it-Q8_0.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 5090) (0000:01:00.0) - 30994 MiB free
llama_model_loader: loaded meta data with 42 key-value pairs and 727 tensors from D:\Apps\dxgperf_appsdata\dxml_models\ModelOpt\llm\gemma_3n_2b\int8_llamacpp_gguf\gemma-3n-E2B-it-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = gemma3n
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.size_label str = 4.5B
llama_model_loader: - kv 3: general.license str = gemma
llama_model_loader: - kv 4: general.base_model.count u32 = 1
llama_model_loader: - kv 5: general.base_model.0.name str = Gemma 3n E4b It
llama_model_loader: - kv 6: general.base_model.0.organization str = Google
llama_model_loader: - kv 7: general.base_model.0.repo_url str = https://huggingface.co/google/gemma-3...
llama_model_loader: - kv 8: general.tags arr[str,5] = ["automatic-speech-recognition", "aut...
llama_model_loader: - kv 9: gemma3n.context_length u32 = 32768
llama_model_loader: - kv 10: gemma3n.embedding_length u32 = 2048
llama_model_loader: - kv 11: gemma3n.block_count u32 = 30
llama_model_loader: - kv 12: gemma3n.feed_forward_length u32 = 8192
llama_model_loader: - kv 13: gemma3n.attention.head_count u32 = 8
llama_model_loader: - kv 14: gemma3n.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 15: gemma3n.attention.key_length u32 = 256
llama_model_loader: - kv 16: gemma3n.attention.value_length u32 = 256
llama_model_loader: - kv 17: gemma3n.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 18: gemma3n.attention.sliding_window u32 = 512
llama_model_loader: - kv 19: gemma3n.attention.head_count_kv u32 = 2
llama_model_loader: - kv 20: gemma3n.altup.active_idx u32 = 0
llama_model_loader: - kv 21: gemma3n.altup.num_inputs u32 = 4
llama_model_loader: - kv 22: gemma3n.embedding_length_per_layer_input u32 = 256
llama_model_loader: - kv 23: gemma3n.attention.shared_kv_layers f32 = 10.000000
llama_model_loader: - kv 24: gemma3n.activation_sparsity_scale arr[f32,30] = [1.644853, 1.644853, 1.644853, 1.6448...
llama_model_loader: - kv 25: gemma3n.attention.sliding_window_pattern arr[bool,30] = [true, true, true, true, false, true,...
llama_model_loader: - kv 26: tokenizer.chat_template str = {{ bos_token }}\n{%- if messages[0]['r...
llama_model_loader: - kv 27: tokenizer.ggml.model str = llama
llama_model_loader: - kv 28: tokenizer.ggml.pre str = default
llama_model_loader: - kv 29: tokenizer.ggml.tokens arr[str,262144] = ["<pad>", "<eos>", "<bos>", "<unk>", ...
llama_model_loader: - kv 30: tokenizer.ggml.scores arr[f32,262144] = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv 31: tokenizer.ggml.token_type arr[i32,262144] = [3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 32: tokenizer.ggml.bos_token_id u32 = 2
llama_model_loader: - kv 33: tokenizer.ggml.eos_token_id u32 = 1
llama_model_loader: - kv 34: tokenizer.ggml.unknown_token_id u32 = 3
llama_model_loader: - kv 35: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 36: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 37: tokenizer.ggml.add_sep_token bool = false
llama_model_loader: - kv 38: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 39: tokenizer.ggml.add_space_prefix bool = false
llama_model_loader: - kv 40: general.quantization_version u32 = 2
llama_model_loader: - kv 41: general.file_type u32 = 7
llama_model_loader: - type f32: 362 tensors
llama_model_loader: - type f16: 93 tensors
llama_model_loader: - type q8_0: 272 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 4.45 GiB (8.59 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
?[0mload: printing all EOG tokens:
load: - 1 ('<eos>')
load: - 106 ('<end_of_turn>')
load: special tokens cache size = 6414
load: token to piece cache size = 1.9446 MB
print_info: arch = gemma3n
print_info: vocab_only = 0
print_info: n_ctx_train = 32768
print_info: n_embd = 2048
print_info: n_embd_inp = 2048
print_info: n_layer = 30
print_info: n_head = 8
print_info: n_head_kv = 2
print_info: n_rot = 256
print_info: n_swa = 512
print_info: is_swa_any = 1
print_info: n_embd_head_k = 256
print_info: n_embd_head_v = 256
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 1.0e+00
print_info: n_ff = 8192
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: n_expert_groups = 0
print_info: n_group_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 32768
print_info: rope_finetuned = unknown
print_info: model type = E2B
print_info: model params = 4.46 B
print_info: general.name = n/a
print_info: vocab type = SPM
print_info: n_vocab = 262144
print_info: n_merges = 0
print_info: BOS token = 2 '<bos>'
print_info: EOS token = 1 '<eos>'
print_info: EOT token = 106 '<end_of_turn>'
print_info: UNK token = 3 '<unk>'
print_info: PAD token = 0 '<pad>'
print_info: LF token = 248 '<0x0A>'
print_info: EOG token = 1 '<eos>'
print_info: EOG token = 106 '<end_of_turn>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 30 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 31/31 layers to GPU
load_tensors: CPU_Mapped model buffer size = 544.00 MiB
load_tensors: CUDA0 model buffer size = 4560.06 MiB
..........................................
llama_context: constructing llama_context
llama_context: n_seq_max = 4
llama_context: n_ctx = 1024
llama_context: n_ctx_seq = 1024
llama_context: n_batch = 1000
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = enabled
llama_context: kv_unified = true
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_seq (1024) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
?[0mllama_context: CUDA_Host output buffer size = 4.00 MiB
llama_kv_cache_iswa: creating non-SWA KV cache, size = 1024 cells
llama_kv_cache: CUDA0 KV buffer size = 8.00 MiB
llama_kv_cache: size = 8.00 MiB ( 1024 cells, 4 layers, 4/1 seqs), K (f16): 4.00 MiB, V (f16): 4.00 MiB
llama_kv_cache_iswa: creating SWA KV cache, size = 1024 cells
llama_kv_cache: CUDA0 KV buffer size = 32.00 MiB
llama_kv_cache: size = 32.00 MiB ( 1024 cells, 16 layers, 4/1 seqs), K (f16): 16.00 MiB, V (f16): 16.00 MiB
llama_context: CUDA0 compute buffer size = 520.00 MiB
llama_context: CUDA_Host compute buffer size = 8.02 MiB
llama_context: graph nodes = 2733
llama_context: graph splits = 2
common_init_from_params: added <eos> logit bias = -inf
common_init_from_params: added <end_of_turn> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 1024
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
?[0m
C:\Windows\System32>