Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
280 changes: 17 additions & 263 deletions ggml/src/ggml-vulkan/ggml-vulkan.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -11370,13 +11370,13 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx, vk_contex
}
}

static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_cgraph * cgraph, ggml_tensor* tensor, int tensor_idx, bool almost_ready);
static void ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_cgraph * cgraph, ggml_tensor* tensor, int tensor_idx, bool almost_ready);

// Returns true if node has enqueued work into the queue, false otherwise
// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool last_node, bool almost_ready, bool submit){
ggml_tensor * node = cgraph->nodes[node_idx];
if (ggml_is_empty(node) || !node->buffer) {
if (ggml_is_empty(node) || ggml_op_is_empty(node->op) || !node->buffer) {
return false;
}

Expand All @@ -11388,132 +11388,19 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
ggml_tensor * src2 = node->src[2];
ggml_tensor * src3 = node->src[3];

switch (node->op) {
// Return on empty ops to avoid generating a compute_ctx and setting exit_tensor
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_NONE:
return false;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(node)) {
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_SOFTPLUS:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_ROUND:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_TRUNC:
break;
default:
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(node)) {
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
break;
default:
return false;
}
break;
case GGML_OP_ADD:
{
int next_node_idx = node_idx + 1 + ctx->num_additional_fused_ops;
if (next_node_idx < cgraph->n_nodes &&
cgraph->nodes[next_node_idx]->op == GGML_OP_RMS_NORM &&
cgraph->nodes[next_node_idx]->src[0] == cgraph->nodes[next_node_idx - 1] &&
ggml_nrows(cgraph->nodes[next_node_idx]) == 1 &&
ctx->device->add_rms_fusion) {
uint32_t size = ggml_vk_rms_partials_size(ctx, cgraph->nodes[node_idx]);
ctx->do_add_rms_partials_offset_calculation = true;
if (ctx->prealloc_size_add_rms_partials_offset + size <= ctx->prealloc_size_add_rms_partials) {
ctx->do_add_rms_partials = true;
}
if (node->op == GGML_OP_ADD) {
int next_node_idx = node_idx + 1 + ctx->num_additional_fused_ops;
if (next_node_idx < cgraph->n_nodes &&
cgraph->nodes[next_node_idx]->op == GGML_OP_RMS_NORM &&
cgraph->nodes[next_node_idx]->src[0] == cgraph->nodes[next_node_idx - 1] &&
ggml_nrows(cgraph->nodes[next_node_idx]) == 1 &&
ctx->device->add_rms_fusion) {
uint32_t size = ggml_vk_rms_partials_size(ctx, cgraph->nodes[node_idx]);
ctx->do_add_rms_partials_offset_calculation = true;
if (ctx->prealloc_size_add_rms_partials_offset + size <= ctx->prealloc_size_add_rms_partials) {
ctx->do_add_rms_partials = true;
}
} break;
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_GET_ROWS:
case GGML_OP_ADD_ID:
case GGML_OP_ACC:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_ADD1:
case GGML_OP_ARANGE:
case GGML_OP_FILL:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_LOG:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_ROLL:
case GGML_OP_CPY:
case GGML_OP_SET_ROWS:
case GGML_OP_CONT:
case GGML_OP_DUP:
case GGML_OP_SILU_BACK:
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_ARGSORT:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_3D:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_SSM_SCAN:
case GGML_OP_SSM_CONV:
case GGML_OP_LEAKY_RELU:
case GGML_OP_FLASH_ATTN_EXT:
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
break;
default:
std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl;
GGML_ABORT("fatal error");
}
}

vk_context compute_ctx;
Expand Down Expand Up @@ -11950,145 +11837,14 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr

ctx->compute_ctx.reset();

bool ok = ggml_vk_compute_forward(ctx, cgraph, node_begin, node_idx_begin, almost_ready);
if (!ok) {
if (node->op == GGML_OP_UNARY) {
std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast<ggml_unary_op>(node->op_params[0])) << ")" << std::endl;
} else if (node->op == GGML_OP_GLU) {
std::cerr << __func__ << ": error: op not supported GLU " << node->name << " (" << ggml_glu_op_name(static_cast<ggml_glu_op>(node->op_params[0])) << ")" << std::endl;
} else {
std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl;
}
}

ggml_vk_compute_forward(ctx, cgraph, node_begin, node_idx_begin, almost_ready);
}
return true;
}

static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, ggml_tensor * tensor, int tensor_idx, bool almost_ready = false) {
static void ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, ggml_tensor * tensor, int tensor_idx, bool almost_ready = false) {
GGML_UNUSED(cgraph);
ggml_backend_buffer * buf = nullptr;

switch (tensor->op) {
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_GET_ROWS:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_ADD1:
case GGML_OP_ARANGE:
case GGML_OP_FILL:
case GGML_OP_ADD_ID:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_LOG:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_ROLL:
case GGML_OP_CPY:
case GGML_OP_SET_ROWS:
case GGML_OP_CONT:
case GGML_OP_DUP:
case GGML_OP_SILU_BACK:
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_NONE:
case GGML_OP_ARGSORT:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_IM2COL_3D:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_SSM_SCAN:
case GGML_OP_SSM_CONV:
case GGML_OP_LEAKY_RELU:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
buf = tensor->buffer;
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_SIGMOID:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_SOFTPLUS:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_ROUND:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_TRUNC:
buf = tensor->buffer;
break;
default:
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(tensor)) {
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
buf = tensor->buffer;
break;
default:
return false;
}
break;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_FLASH_ATTN_EXT:
buf = tensor->buffer;

break;
default:
return false;
}

if (buf == nullptr) {
return false;
}
GGML_UNUSED(tensor);

VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")");

Expand Down Expand Up @@ -12132,8 +11888,6 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
subctx->out_memcpys.clear();
subctx->memsets.clear();
}

return true;
}

// Clean up after graph processing is done
Expand Down
Loading