Skip to content

githubaravind/telecom-churn-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 

Repository files navigation

telecom-churn-prediction

Telecom Churn Prediction Problem Statement Business Problem Overview In the telecom industry, customers are able to choose from multiple service providers and actively switch from one operator to another. In this highly competitive market, the telecommunications industry experiences an average of 15-25% annual churn rate. Given the fact that it costs 5-10 times more to acquire a new customer than to retain an existing one, customer retention has now become even more important than customer acquisition.

For many incumbent operators, retaining high profitable customers is the number one business goal.

To reduce customer churn, telecom companies need to predict which customers are at high risk of churn.

In this project, you will analyse customer-level data of a leading telecom firm, build predictive models to identify customers at high risk of churn and identify the main indicators of churn.

Understanding and Defining Churn There are two main models of payment in the telecom industry - postpaid (customers pay a monthly/annual bill after using the services) and prepaid (customers pay/recharge with a certain amount in advance and then use the services).

In the postpaid model, when customers want to switch to another operator, they usually inform the existing operator to terminate the services, and you directly know that this is an instance of churn.

However, in the prepaid model, customers who want to switch to another network can simply stop using the services without any notice, and it is hard to know whether someone has actually churned or is simply not using the services temporarily (e.g. someone may be on a trip abroad for a month or two and then intend to resume using the services again).

Thus, churn prediction is usually more critical (and non-trivial) for prepaid customers, and the term ‘churn’ should be defined carefully. Also, prepaid is the most common model in India and southeast Asia, while postpaid is more common in Europe in North America.

This project is based on the Indian and Southeast Asian market.

Definitions of Churn There are various ways to define churn, such as: Revenue-based churn: Customers who have not utilised any revenue-generating facilities such as mobile internet, outgoing calls, SMS etc. over a given period of time. One could also use aggregate metrics such as ‘customers who have generated less than INR 4 per month in total/average/median revenue’.

The main shortcoming of this definition is that there are customers who only receive calls/SMSes from their wage-earning counterparts, i.e. they don’t generate revenue but use the services. For example, many users in rural areas only receive calls from their wage-earning siblings in urban areas.

Usage-based churn: Customers who have not done any usage, either incoming or outgoing - in terms of calls, internet etc. over a period of time.

A potential shortcoming of this definition is that when the customer has stopped using the services for a while, it may be too late to take any corrective actions to retain them. For e.g., if you define churn based on a ‘two-months zero usage’ period, predicting churn could be useless since by that time the customer would have already switched to another operator.

In this project, you will use the usage-based definition to define churn.

High-value Churn In the Indian and the southeast Asian market, approximately 80% of revenue comes from the top 20% customers (called high-value customers). Thus, if we can reduce churn of the high-value customers, we will be able to reduce significant revenue leakage.

In this project, you will define high-value customers based on a certain metric (mentioned later below) and predict churn only on high-value customers. Solution From the above problem statement, it's clear that it will be a Binary Classification problem.

The solution is developed using Python Jupyter Notebook. It is classified into two models as follows:

Model 1: It will be used to predict whether a high-value customer will churn or not, in near future (i.e. churn phase). By knowing this, the company can take action steps such as providing special plans, discounts on recharge etc.

Model 2: It will be used to identify important variables that are strong predictors of churn. These variables may also indicate why customers choose to switch to other networks.

The solution code is divided into the following sections:

Data understanding

Preprocessing

EDA

Handle missing values

Feature Engineering

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published