Interpret machine learning models visually and interactively, directly in JavaScript.
ExplainAI is a production-ready JavaScript library that brings state-of-the-art model interpretability techniques to the web. Unlike Python-centric tools (SHAP, Captum, ELI5), ExplainAI runs client-side or edge-side, works with any model (local or remote), and integrates seamlessly into web applications.
- 🔍 Multiple Explainability Methods: SHAP, LIME, Grad-CAM, Integrated Gradients, Attention Visualization
- 🌐 Universal Model Support: TensorFlow.js, ONNX.js, REST APIs, or custom implementations
- ⚡ High Performance: WebAssembly acceleration with pure JS fallback
- 🎨 Rich Visualizations: Interactive, customizable UI components
- 🔒 Privacy-First: Client-side processing, no data leaves your browser
- 📦 Modular Architecture: Use only what you need
ExplainAI is organized as a monorepo with multiple packages:
- explainai - Complete package (includes all packages below)
- explainai-core - Core algorithms and model interfaces
- explainai-ui - React components and web visualizations
- explainai-node - Node.js runtime and CLI tools
- explainai-playground - Interactive demo application
# Install everything at once
npm install explainai
# Or install individual packages
npm install explainai-core
npm install explainai-uiimport { explain } from 'explainai-core';
import { FeatureImportanceChart } from 'explainai-ui';
// Explain a model prediction
const explanation = await explain(model, input, {
method: 'shap',
samples: 100
});
// Visualize results
<FeatureImportanceChart explanation={explanation} />- Model Dashboards: Embed explainability in monitoring tools
- AI Product UIs: Help users understand AI decisions
- Compliance Auditing: Provide visual proof for regulatory requirements
- Education: Teach interpretability in interactive environments
- MLOps Integration: Automated bias and interpretability checks
┌─────────────────────────────────────┐
│ Web UI / React Components │
├─────────────────────────────────────┤
│ Explainability Engine │
│ (SHAP, LIME, Grad-CAM, etc.) │
├─────────────────────────────────────┤
│ Model Interface Layer │
│ (TensorFlow.js, ONNX.js, API) │
├─────────────────────────────────────┤
│ Computation Layer │
│ (WebAssembly + Web Workers) │
└─────────────────────────────────────┘
# Clone repository
git clone https://github.com/gyash1512/ExplainAI.git
cd ExplainAI
# Install dependencies
npm install
# Build all packages
npm run build
# Run playground
npm run devWe welcome contributions! Please see our Contributing Guide for details.
MIT License - see LICENSE for details.
Yash Gupta (@gyash1512)
ExplainAI is inspired by excellent Python libraries:
Built with ❤️ for the JavaScript ML community