Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 14 additions & 17 deletions src/diffusers/models/resnet.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
from functools import partial

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
Expand Down Expand Up @@ -134,10 +133,10 @@ def _upsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1):
kernel = [1] * factor

# setup kernel
kernel = np.asarray(kernel, dtype=np.float32)
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = np.outer(kernel, kernel)
kernel /= np.sum(kernel)
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)

kernel = kernel * (gain * (factor**2))

Expand Down Expand Up @@ -219,10 +218,10 @@ def _downsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1):
kernel = [1] * factor

# setup kernel
kernel = np.asarray(kernel, dtype=np.float32)
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = np.outer(kernel, kernel)
kernel /= np.sum(kernel)
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)

kernel = kernel * gain

Expand Down Expand Up @@ -391,16 +390,14 @@ def upsample_2d(x, kernel=None, factor=2, gain=1):
if kernel is None:
kernel = [1] * factor

kernel = np.asarray(kernel, dtype=np.float32)
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = np.outer(kernel, kernel)
kernel /= np.sum(kernel)
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)

kernel = kernel * (gain * (factor**2))
p = kernel.shape[0] - factor
return upfirdn2d_native(
x, torch.tensor(kernel, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)
)
return upfirdn2d_native(x, kernel.to(device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))


def downsample_2d(x, kernel=None, factor=2, gain=1):
Expand All @@ -425,14 +422,14 @@ def downsample_2d(x, kernel=None, factor=2, gain=1):
if kernel is None:
kernel = [1] * factor

kernel = np.asarray(kernel, dtype=np.float32)
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = np.outer(kernel, kernel)
kernel /= np.sum(kernel)
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)

kernel = kernel * gain
p = kernel.shape[0] - factor
return upfirdn2d_native(x, torch.tensor(kernel, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))
return upfirdn2d_native(x, kernel.to(device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def upfirdn2d_native(input, kernel, up=1, down=1, pad=(0, 0)):
Expand Down