Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hqq serialization #32379

Closed
wants to merge 6 commits into from
Closed

Hqq serialization #32379

wants to merge 6 commits into from

Conversation

SunMarc
Copy link
Member

@SunMarc SunMarc commented Aug 1, 2024

What does this PR do?

Fixed version of #32056

The dispatch_model issue is solved. However we still have the issue with sharded checkpoints.

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

@mobicham
Copy link
Contributor

mobicham commented Aug 26, 2024

@SunMarc thank you very much!
I just tried with an 8B model

import torch, gc
from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig

device    = 'cuda:0'
dtype     = torch.float16
model_id  = 'meta-llama/Meta-Llama-3-8B'
cache_dir = '.' 

quant_config  = HqqConfig(nbits=4, group_size=64, quant_zero=False, quant_scale=False, axis=1)

model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    torch_dtype=dtype, 
    cache_dir=cache_dir,
    device_map="cuda:0", 
    quantization_config=quant_config
)
 
#Test 
input_tensor = torch.zeros((1, 8), dtype=torch.int32, device='cuda:0')

with torch.no_grad():
	out_ref = model.forward(input_tensor)


# Save
model.save_pretrained("quant_model")
del model
torch.cuda.empty_cache(); gc.collect();

#Load
model_loaded = AutoModelForCausalLM.from_pretrained(
    'quant_model', 
    torch_dtype=dtype, 
    cache_dir=cache_dir,
    device_map=device)

with torch.no_grad():
	out = model_loaded.forward(input_tensor)


assert (out.logits - out_ref.logits).abs().mean() == 0

I will try with more models, especially larger models to see if it's working properly.

Other than that, what is missing for an official merge?

@mobicham
Copy link
Contributor

mobicham commented Aug 26, 2024

I fixed an overflow problem while encoding to safetensors mobiusml/hqq@7cd36a7 , now it works fine with 70B as well:

import torch, gc
from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig

device    = 'cuda:0'
dtype     = torch.float16
model_id  = 'meta-llama/Meta-Llama-3-70B'
cache_dir = '.'


quant_config  = HqqConfig(nbits=2, group_size=1024, quant_zero=False, quant_scale=False, axis=1)
# fit in a single 24GB gpu for testing only

model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    torch_dtype=dtype, 
    cache_dir=cache_dir,
    device_map="cuda:0", 
    quantization_config=quant_config
)
 
#Test 
input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=device)

with torch.no_grad():
	out_ref = model.forward(input_tensor)


# In [6]: out_ref.logits
# Out[6]: 
# tensor([[[ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766],
#          [ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766],
#          [ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766],
#          ...,
#          [ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766],
#          [ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766],
#          [ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766]]],
#        device='cuda:0')


# Save
model.save_pretrained("quant_model")
del model
torch.cuda.empty_cache(); gc.collect();

#Load
model_loaded = AutoModelForCausalLM.from_pretrained(
    'quant_model', 
    torch_dtype=dtype, 
    cache_dir=cache_dir,
    device_map=device)

with torch.no_grad():
	out = model_loaded.forward(input_tensor)


assert (out.logits - out_ref.logits).abs().mean() == 0

# tensor([[[ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766],
#          [ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766],
#          [ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766],
#          ...,
#          [ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766],
#          [ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766],
#          [ 2.9355, -1.3359,  0.5991,  ..., -0.4763, -0.4766, -0.4766]]],
#        device='cuda:0')

@mobicham mobicham mentioned this pull request Aug 27, 2024
@SunMarc
Copy link
Member Author

SunMarc commented Aug 29, 2024

superseded by #33141

@SunMarc SunMarc closed this Aug 29, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants