Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 20 additions & 24 deletions src/transformers/models/metaclip_2/modeling_metaclip_2.py
Original file line number Diff line number Diff line change
Expand Up @@ -715,16 +715,14 @@ def forward(
Examples:

```python
>>> import torch
>>> from transformers import AutoTokenizer, MetaClip2TextModelWithProjection

>>> model = MetaClip2TextModelWithProjection.from_pretrained("facebook/metaclip-2-worldwide-huge-quickgelu")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/metaclip-2-worldwide-huge-quickgelu")

>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")

>>> with torch.inference_mode():
... outputs = model(**inputs)
>>> outputs = model(**inputs)
>>> text_embeds = outputs.text_embeds
```"""

Expand Down Expand Up @@ -887,9 +885,11 @@ def __init__(self, config: MetaClip2Config):
@auto_docstring
def get_text_features(
self,
input_ids: torch.Tensor,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
Expand All @@ -899,16 +899,13 @@ def get_text_features(
Examples:

```python
>>> import torch
>>> from transformers import AutoTokenizer, MetaClip2Model

>>> model = MetaClip2Model.from_pretrained("facebook/metaclip-2-worldwide-huge-quickgelu")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/metaclip-2-worldwide-huge-quickgelu")

>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")

>>> with torch.inference_mode():
... text_features = model.get_text_features(**inputs)
>>> text_features = model.get_text_features(**inputs)
```"""
text_outputs: BaseModelOutputWithPooling = self.text_model(
input_ids=input_ids,
Expand All @@ -924,7 +921,9 @@ def get_text_features(
@auto_docstring
def get_image_features(
self,
pixel_values: torch.FloatTensor,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> torch.FloatTensor:
r"""
Expand All @@ -935,20 +934,19 @@ def get_image_features(
Examples:

```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, MetaClip2Model
>>> from transformers.image_utils import load_image

>>> model = MetaClip2Model.from_pretrained("facebook/metaclip-2-worldwide-huge-quickgelu")
>>> processor = AutoProcessor.from_pretrained("facebook/metaclip-2-worldwide-huge-quickgelu")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = load_image(url)
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> inputs = processor(images=image, return_tensors="pt")

>>> with torch.inference_mode():
... image_features = model.get_image_features(**inputs)
>>> image_features = model.get_image_features(**inputs)
```"""
vision_outputs: BaseModelOutputWithPooling = self.vision_model(
pixel_values=pixel_values,
Expand Down Expand Up @@ -980,22 +978,21 @@ def forward(
Examples:

```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, MetaClip2Model
>>> from transformers.image_utils import load_image

>>> model = MetaClip2Model.from_pretrained("facebook/metaclip-2-worldwide-huge-quickgelu")
>>> processor = AutoProcessor.from_pretrained("facebook/metaclip-2-worldwide-huge-quickgelu")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = load_image(url)
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )

>>> with torch.inference_mode():
... outputs = model(**inputs)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
Expand Down Expand Up @@ -1277,20 +1274,19 @@ def forward(
Examples:

```python
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, MetaClip2VisionModelWithProjection
>>> from transformers.image_utils import load_image

>>> model = MetaClip2VisionModelWithProjection.from_pretrained("facebook/metaclip-2-worldwide-huge-quickgelu")
>>> processor = AutoProcessor.from_pretrained("facebook/metaclip-2-worldwide-huge-quickgelu")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = load_image(url)
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> inputs = processor(images=image, return_tensors="pt")

>>> with torch.inference_mode():
... outputs = model(**inputs)
>>> outputs = model(**inputs)
>>> image_embeds = outputs.image_embeds
```"""

Expand Down