Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/source/en/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -709,6 +709,8 @@
title: UL2
- local: model_doc/umt5
title: UMT5
- local: model_doc/vaultgemma
title: VaultGemma
- local: model_doc/xmod
title: X-MOD
- local: model_doc/xglm
Expand Down
103 changes: 103 additions & 0 deletions docs/source/en/model_doc/vaultgemma.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
<!--Copyright 2025 the HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.


⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer.

-->

# VaultGemma

## Overview

[VaultGemma](https://services.google.com/fh/files/blogs/vaultgemma_tech_report.pdf) is a text-only decoder model
derived from [Gemma 2](https://huggingface.co/docs/transformers/en/model_doc/gemma2), notably it drops the norms after
the Attention and MLP blocks, and uses full attention for all layers instead of alternating between full attention and
local sliding attention. VaultGemma is available as a pretrained model with 1B parameters that uses a 1024 token
sequence length.

VaultGemma was trained from scratch with sequence-level differential privacy (DP). Its training data includes the same
mixture as the [Gemma 2 models](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315),
consisting of a number of documents of varying lengths. Additionally, it is trained using
[DP stochastic gradient descent (DP-SGD)](https://arxiv.org/abs/1607.00133) and provides a
(ε ≤ 2.0, δ ≤ 1.1e-10)-sequence-level DP guarantee, where a sequence consists of 1024 consecutive tokens extracted from
heterogeneous data sources. Specifically, the privacy unit of the guarantee is for the sequences after sampling and
packing of the mixture.

> [!TIP]
> Click on the VaultGemma models in the right sidebar for more examples of how to apply VaultGemma to different language tasks.

The example below demonstrates how to chat with the model with [`Pipeline`], the [`AutoModel`] class, or from the
command line.

<hfoptions id="usage">
<hfoption id="Pipeline">


```python
from transformers import pipeline

pipe = pipeline(
task="text-generation",
model="google/vaultgemma-1b",
dtype="auto",
device_map="auto",
)

text = "Tell me an unknown interesting biology fact about the brain."
outputs = pipe(text, max_new_tokens=32)
response = outputs[0]["generated_text"]
print(response)
```

</hfoption>
<hfoption id="AutoModel">

```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "google/vaultgemma-1b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", dtype="auto")

text = "Tell me an unknown interesting biology fact about the brain."
input_ids = tokenizer(text, return_tensors="pt").to(model.device)

outputs = model.generate(**input_ids, max_new_tokens=32)
print(tokenizer.decode(outputs[0]))
```

</hfoption>
<hfoption id="transformers CLI">

```
echo -e "Write me a poem about Machine Learning. Answer:" | transformers run --task text2text-generation --model google/vaultgemma-1b-pt --device 0
```

</hfoption>
</hfoptions>

## VaultGemmaConfig

[[autodoc]] VaultGemmaConfig

## VaultGemmaModel

[[autodoc]] VaultGemmaModel
- forward

## VaultGemmaForCausalLM

[[autodoc]] VaultGemmaForCausalLM
1 change: 1 addition & 0 deletions src/transformers/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,6 +338,7 @@
from .unispeech_sat import *
from .univnet import *
from .upernet import *
from .vaultgemma import *
from .video_llava import *
from .videomae import *
from .vilt import *
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/models/auto/configuration_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -400,6 +400,7 @@
("univnet", "UnivNetConfig"),
("upernet", "UperNetConfig"),
("van", "VanConfig"),
("vaultgemma", "VaultGemmaConfig"),
("video_llava", "VideoLlavaConfig"),
("videomae", "VideoMAEConfig"),
("vilt", "ViltConfig"),
Expand Down Expand Up @@ -842,6 +843,7 @@
("univnet", "UnivNet"),
("upernet", "UPerNet"),
("van", "VAN"),
("vaultgemma", "VaultGemma"),
("video_llava", "VideoLlava"),
("videomae", "VideoMAE"),
("vilt", "ViLT"),
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/models/auto/modeling_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -384,6 +384,7 @@ class _BaseModelWithGenerate(PreTrainedModel, GenerationMixin):
("unispeech-sat", "UniSpeechSatModel"),
("univnet", "UnivNetModel"),
("van", "VanModel"),
("vaultgemma", "VaultGemmaModel"),
("video_llava", "VideoLlavaModel"),
("videomae", "VideoMAEModel"),
("vilt", "ViltModel"),
Expand Down Expand Up @@ -732,6 +733,7 @@ class _BaseModelWithGenerate(PreTrainedModel, GenerationMixin):
("starcoder2", "Starcoder2ForCausalLM"),
("transfo-xl", "TransfoXLLMHeadModel"),
("trocr", "TrOCRForCausalLM"),
("vaultgemma", "VaultGemmaForCausalLM"),
("whisper", "WhisperForCausalLM"),
("xglm", "XGLMForCausalLM"),
("xlm", "XLMWithLMHeadModel"),
Expand Down
29 changes: 29 additions & 0 deletions src/transformers/models/vaultgemma/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
# coding=utf-8
# Copyright 2025 the HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING

from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure


if TYPE_CHECKING:
from .configuration_vaultgemma import *
from .modeling_vaultgemma import *
else:
import sys

_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
182 changes: 182 additions & 0 deletions src/transformers/models/vaultgemma/configuration_vaultgemma.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/vaultgemma/modular_vaultgemma.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_vaultgemma.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 the HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...configuration_utils import PretrainedConfig, layer_type_validation


class VaultGemmaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VaultGemmaModel`]. It is used to instantiate an VaultGemma
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the VaultGemma-7B.
e.g. [google/vaultgemma-7b](https://huggingface.co/google/vaultgemma-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the VaultGemma model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`VaultGemmaModel`]
hidden_size (`int`, *optional*, defaults to 2304):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 9216):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 26):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
query_pre_attn_scalar (`float`, *optional*, defaults to 256):
scaling factor used on the attention scores
sliding_window (`int`, *optional*, defaults to 4096):
in VaultGemma, every other layer uses sliding window attention. This is the size of the sliding window.
layer_types (`list`, *optional*):
Attention pattern for each layer.
final_logit_softcapping (`float`, *optional*, defaults to 30.0):
scaling factor when applying tanh softcapping on the logits.
attn_logit_softcapping (`float`, *optional*, defaults to 50.0):
scaling factor when applying tanh softcapping on the attention scores.

```python
>>> from transformers import VaultGemmaModel, VaultGemmaConfig
>>> # Initializing a VaultGemma vaultgemma-7b style configuration
>>> configuration = VaultGemmaConfig()
>>> # Initializing a model from the vaultgemma-7b style configuration
>>> model = VaultGemmaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "vaultgemma"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}

def __init__(
self,
vocab_size=256000,
hidden_size=2304,
intermediate_size=9216,
num_hidden_layers=26,
num_attention_heads=8,
num_key_value_heads=4,
head_dim=256,
hidden_activation="gelu_pytorch_tanh",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
query_pre_attn_scalar=256,
sliding_window=4096,
layer_types=None,
final_logit_softcapping=30.0,
attn_logit_softcapping=50.0,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.query_pre_attn_scalar = query_pre_attn_scalar
self.sliding_window = sliding_window
self.final_logit_softcapping = final_logit_softcapping
self.attn_logit_softcapping = attn_logit_softcapping
self.layer_types = layer_types

if self.layer_types is None:
self.layer_types = [
"sliding_attention" if bool((i + 1) % 2) else "full_attention" for i in range(self.num_hidden_layers)
]
layer_type_validation(self.layer_types)


__all__ = ["VaultGemmaConfig"]
Loading