This project demonstrates a complete end-to-end data engineering solution for an e-commerce platform, showcasing ETL pipelines, data warehousing, and analytics capabilities suitable for an Analytics Engineer role.
An e-commerce company needs to:
- Track customer orders, products, and user behavior
- Build a dimensional data warehouse for analytics
- Monitor data quality and pipeline health
- Generate daily business reports and insights
- Scale data processing for growing business needs
- Transactional Database (PostgreSQL): Orders, Products, Customers, Payments
- Event Logs (CSV/JSON): User clickstream, app events
- External APIs: Payment gateway, shipping providers
- Staging Layer: Raw data ingestion
- Core Layer: Cleaned and transformed data
- Dimensional Model: Star schema with fact and dimension tables
- Fact:
fact_orders,fact_daily_sales - Dimensions:
dim_customers,dim_products,dim_date,dim_locations
- Fact:
- Language: Python
- Database: PostgreSQL
- Orchestration: Apache Airflow
- Data Processing: Pandas, SQLAlchemy
- Data Quality: Custom validation framework
- Visualization: SQL queries for BI tools
analytics_engineer_project/
├── README.md
├── requirements.txt
├── config/
│ ├── database_config.yaml
│ └── pipeline_config.yaml
├── data/
│ ├── sample_data/
│ └── data_generator.py
├── sql/
│ ├── schema/
│ │ ├── 01_create_staging_tables.sql
│ │ ├── 02_create_core_tables.sql
│ │ └── 03_create_dimensional_model.sql
│ ├── transforms/
│ │ ├── staging_to_core.sql
│ │ └── core_to_dimensional.sql
│ └── analytics/
│ ├── daily_sales_report.sql
│ └── customer_metrics.sql
├── src/
│ ├── etl/
│ │ ├── __init__.py
│ │ ├── extract.py
│ │ ├── transform.py
│ │ └── load.py
│ ├── data_quality/
│ │ ├── __init__.py
│ │ ├── validators.py
│ │ └── monitors.py
│ ├── utils/
│ │ ├── __init__.py
│ │ ├── db_connector.py
│ │ └── logger.py
│ └── orchestration/
│ ├── dags/
│ │ ├── daily_etl_pipeline.py
│ │ ├── data_quality_checks.py
│ │ └── dimensional_model_refresh.py
│ └── tasks/
├── tests/
│ ├── test_etl.py
│ └── test_data_quality.py
├── notebooks/
│ └── exploratory_analysis.ipynb
└── docs/
├── architecture.md
├── data_dictionary.md
└── setup_guide.md
- Extract: Pull data from multiple sources (databases, files, APIs)
- Transform: Data cleaning, validation, business logic application
- Load: Incremental and full load strategies into data warehouse
- Implemented star schema for optimal query performance
- SCD Type 2 for tracking historical changes
- Partitioning strategies for large fact tables
- Indexing for query optimization
- Scheduled DAGs for daily, hourly pipelines
- Dependency management between tasks
- Error handling and retry logic
- Email/Slack notifications on failures
- Schema validation
- Data completeness checks
- Business rule validation
- Anomaly detection
- Data profiling and statistics
- Pipeline execution metrics
- Data quality dashboards
- Error tracking and alerting
- Performance monitoring
✅ ETL Development: Complete extract, transform, load processes
✅ Python Proficiency: Object-oriented design, pandas, SQLAlchemy
✅ SQL Mastery: Complex queries, window functions, CTEs, optimization
✅ Data Warehousing: Dimensional modeling, star schema, SCD
✅ Workflow Orchestration: Apache Airflow DAGs, task dependencies
✅ Data Quality: Validation frameworks, monitoring, alerting
✅ Database Management: PostgreSQL, connection pooling, transactions
✅ Best Practices: Code organization, documentation, testing
- Python 3.9+
- PostgreSQL 13+
- Apache Airflow 2.0+# Clone the repository
cd analytics_engineer_project
# Create Python virtual environment (recommended)
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Set up PostgreSQL data warehouse database
createdb ecommerce_dwh
# Run database schema creation
psql -d ecommerce_dwh -f sql/schema/01_create_staging_tables.sql
psql -d ecommerce_dwh -f sql/schema/02_create_core_tables.sql
psql -d ecommerce_dwh -f sql/schema/03_create_dimensional_model.sql
# Update database password in config/database_config.yaml
# Change 'your_password_here' to your actual postgres password
# Generate sample data (loads directly into staging tables)
python data/data_generator.py
# Optional: Initialize Airflow (for workflow orchestration)
export AIRFLOW_HOME=$(pwd)/airflow
airflow db init
airflow users create --username admin --password admin --firstname Admin --lastname User --role Admin --email admin@example.com
# Start Airflow (optional)
airflow webserver -p 8080 &
airflow scheduler &# Run ETL manually (after generating sample data)
python src/etl/transform.py # Transform staging → core
python src/etl/load.py # Load core → analytics
# Run data quality checks
python src/data_quality/validators.py
# Run pipeline monitoring
python src/data_quality/monitors.py
# Or trigger complete Airflow DAG (if Airflow is set up)
airflow dags trigger daily_etl_pipelineThe pipeline generates key business metrics:
- Daily/Monthly GMV (Gross Merchandise Value)
- Customer Acquisition & Retention metrics
- Product Performance analysis
- Order Fulfillment metrics
- Payment Success rates
- Customer Lifetime Value (CLV)
- Integration with Apache Spark for big data processing
- Real-time streaming with Kafka
- dbt for transformation layer
- CI/CD pipeline with GitHub Actions
- Docker containerization
- Kubernetes deployment
- Integration with BI tools (Tableau, Power BI, Metabase)