Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
m, n = len(text1), len(text2)
f = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if text1[i - 1] == text2[j - 1]:
f[i][j] = f[i - 1][j - 1] + 1
else:
f[i][j] = max(f[i - 1][j], f[i][j - 1])
return f[m][n]
282 changes: 282 additions & 0 deletions Solution/1143. Longest Common Subsequence/readme.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,282 @@

<!-- problem:start -->

# [1143. Longest Common Subsequence](https://leetcode.com/problems/longest-common-subsequence)

---
- **comments**: true
- **difficulty**: Medium
- **tags**:
- String
- Dynamic Programming
---


## Description

<!-- description:start -->

<p>Given two strings <code>text1</code> and <code>text2</code>, return <em>the length of their longest <strong>common subsequence</strong>. </em>If there is no <strong>common subsequence</strong>, return <code>0</code>.</p>

<p>A <strong>subsequence</strong> of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.</p>

<ul>
<li>For example, <code>&quot;ace&quot;</code> is a subsequence of <code>&quot;abcde&quot;</code>.</li>
</ul>

<p>A <strong>common subsequence</strong> of two strings is a subsequence that is common to both strings.</p>

<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>

<pre>
<strong>Input:</strong> text1 = &quot;abcde&quot;, text2 = &quot;ace&quot;
<strong>Output:</strong> 3
<strong>Explanation:</strong> The longest common subsequence is &quot;ace&quot; and its length is 3.
</pre>

<p><strong class="example">Example 2:</strong></p>

<pre>
<strong>Input:</strong> text1 = &quot;abc&quot;, text2 = &quot;abc&quot;
<strong>Output:</strong> 3
<strong>Explanation:</strong> The longest common subsequence is &quot;abc&quot; and its length is 3.
</pre>

<p><strong class="example">Example 3:</strong></p>

<pre>
<strong>Input:</strong> text1 = &quot;abc&quot;, text2 = &quot;def&quot;
<strong>Output:</strong> 0
<strong>Explanation:</strong> There is no such common subsequence, so the result is 0.
</pre>

<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>

<ul>
<li><code>1 &lt;= text1.length, text2.length &lt;= 1000</code></li>
<li><code>text1</code> and <code>text2</code> consist of only lowercase English characters.</li>
</ul>

<!-- description:end -->

## Solutions

<!-- solution:start -->

### Solution 1: Dynamic Programming

We define $f[i][j]$ as the length of the longest common subsequence of the first $i$ characters of $text1$ and the first $j$ characters of $text2$. Therefore, the answer is $f[m][n]$, where $m$ and $n$ are the lengths of $text1$ and $text2$, respectively.

If the $i$th character of $text1$ and the $j$th character of $text2$ are the same, then $f[i][j] = f[i - 1][j - 1] + 1$; if the $i$th character of $text1$ and the $j$th character of $text2$ are different, then $f[i][j] = max(f[i - 1][j], f[i][j - 1])$. The state transition equation is:

$$
f[i][j] =
\begin{cases}
f[i - 1][j - 1] + 1, & \textit{if } text1[i - 1] = text2[j - 1] \\
\max(f[i - 1][j], f[i][j - 1]), & \textit{if } text1[i - 1] \neq text2[j - 1]
\end{cases}
$$

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of $text1$ and $text2$, respectively.

<!-- tabs:start -->

#### Python3

```python
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
m, n = len(text1), len(text2)
f = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if text1[i - 1] == text2[j - 1]:
f[i][j] = f[i - 1][j - 1] + 1
else:
f[i][j] = max(f[i - 1][j], f[i][j - 1])
return f[m][n]
```

#### Java

```java
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length(), n = text2.length();
int[][] f = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[m][n];
}
}
```

#### C++

```cpp
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int m = text1.size(), n = text2.size();
int f[m + 1][n + 1];
memset(f, 0, sizeof f);
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (text1[i - 1] == text2[j - 1]) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[m][n];
}
};
```

#### Go

```go
func longestCommonSubsequence(text1 string, text2 string) int {
m, n := len(text1), len(text2)
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
if text1[i-1] == text2[j-1] {
f[i][j] = f[i-1][j-1] + 1
} else {
f[i][j] = max(f[i-1][j], f[i][j-1])
}
}
}
return f[m][n]
}
```

#### TypeScript

```ts
function longestCommonSubsequence(text1: string, text2: string): number {
const m = text1.length;
const n = text2.length;
const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
for (let i = 1; i <= m; i++) {
for (let j = 1; j <= n; j++) {
if (text1[i - 1] === text2[j - 1]) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[m][n];
}
```

#### Rust

```rust
impl Solution {
pub fn longest_common_subsequence(text1: String, text2: String) -> i32 {
let (m, n) = (text1.len(), text2.len());
let (text1, text2) = (text1.as_bytes(), text2.as_bytes());
let mut f = vec![vec![0; n + 1]; m + 1];
for i in 1..=m {
for j in 1..=n {
f[i][j] = if text1[i - 1] == text2[j - 1] {
f[i - 1][j - 1] + 1
} else {
f[i - 1][j].max(f[i][j - 1])
};
}
}
f[m][n]
}
}
```

#### JavaScript

```js
/**
* @param {string} text1
* @param {string} text2
* @return {number}
*/
var longestCommonSubsequence = function (text1, text2) {
const m = text1.length;
const n = text2.length;
const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
if (text1[i - 1] == text2[j - 1]) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[m][n];
};
```

#### C#

```cs
public class Solution {
public int LongestCommonSubsequence(string text1, string text2) {
int m = text1.Length, n = text2.Length;
int[,] f = new int[m + 1, n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (text1[i - 1] == text2[j - 1]) {
f[i, j] = f[i - 1, j - 1] + 1;
} else {
f[i, j] = Math.Max(f[i - 1, j], f[i, j - 1]);
}
}
}
return f[m, n];
}
}
```

#### Kotlin

```kotlin
class Solution {
fun longestCommonSubsequence(text1: String, text2: String): Int {
val m = text1.length
val n = text2.length
val f = Array(m + 1) { IntArray(n + 1) }
for (i in 1..m) {
for (j in 1..n) {
if (text1[i - 1] == text2[j - 1]) {
f[i][j] = f[i - 1][j - 1] + 1
} else {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1])
}
}
}
return f[m][n]
}
}
```

<!-- tabs:end -->

<!-- solution:end -->

<!-- problem:end -->