-
Notifications
You must be signed in to change notification settings - Fork 60
Open
Labels
enhancementNew feature or requestNew feature or request
Description
from auto_round import AutoRound
from pathlib import Path
model_dir = Path(r"c:\Users\XXX\Documents\python\autoround\facebook") # <-- hier deinen Pfad eintragen
# --- Überprüfen, ob der Pfad existiert und ein Verzeichnis ist ---
if not model_dir.exists():
print(f"❌ Der Pfad '{model_dir}' existiert nicht.")
elif not model_dir.is_dir():
print(f"⚠️ Der Pfad '{model_dir}' ist keine Verzeichnisstruktur.")
else:
print(f"📁 Inhalte des Verzeichnisses: {model_dir}\n")
# --- Alle Dateien im Verzeichnis auflisten ---
files = [f for f in model_dir.iterdir() if f.is_file()]
if not files:
print("ℹ️ Keine Dateien im Verzeichnis gefunden.")
else:
for file in files:
print(f" - {file.name}")
# Available schemes: "W2A16", "W3A16", "W4A16", "W8A16", "NVFP4", "MXFP4" (no real kernels), "GGUF:Q4_K_M", etc.
ar = AutoRound(model_dir, scheme="W4A16", iters=50, lr=5e-3)
# Highest accuracy (4–5× slower).
# `low_gpu_mem_usage=True` saves ~20GB VRAM but runs ~30% slower.
# ar = AutoRound(model_name_or_path, nsamples=512, iters=1000, low_gpu_mem_usage=True)
# Faster quantization (2–3× speedup) with slight accuracy drop at W4G128.
# ar = AutoRound(model_name_or_path, nsamples=128, iters=50, lr=5e-3)
# Supported formats: "auto_round" (default), "auto_gptq", "auto_awq", "llm_compressor", "gguf:q4_k_m", etc.
ar.quantize_and_save(output_dir=r"c:\Users\XXX\Documents\python\autoround\tmp_autoround", format="q4_k_m")
thats shows the shell:
2025-10-08 16:52:23,670 INFO utils.py L164: NumExpr defaulting to 16 threads.
📁 Inhalte des Verzeichnisses: c:\Users\XXX\Documents\python\autoround\facebook
- config.json
- flax_model.msgpack
- generation_config.json
- gitattributes
- LICENSE.md
- merges.txt
- pytorch_model.bin
- README.md
- special_tokens_map.json
- tf_model.h5
- tokenizer_config.json
- vocab.json
Traceback (most recent call last):
File "C:\Users\XXX\Documents\python\autoround\auto01.py", line 24, in
ar = AutoRound(model_dir, scheme="W4A16", iters=50, lr=5e-3)
TypeError: AutoRound.init() missing 1 required positional argument: 'tokenizer'
what do i miss ?
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or request